
Toggling in a simple program DEC PDP-8 and PiDP-8 using
the switch register
Published: 08-06-2016 | Author: Remy van Elst | Text only version of this article

Table of Contents

• Backstory
• BlinkenBone
• Switches and Lamps

• Front Panel switches
• Register Indicators Lamps
• Major state indicators
• Miscellaneous indicators
• Instruction indicators

• The program to blink lamps

• chmod +x ./palbart ./palbart shifter.pal

• Step by step
• Toggle!

https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.txt
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_11
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_10
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_9
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_8
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_7
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_6
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_5
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_4
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_3
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_2
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_1
https://raymii.org/s/articles/Toggling_in_a_simple_program_on_the_DEC_PDP-8_and_PiDP-8_using_the_switch_register.html#toc_0

• An original PDP-8/i.

In this guide I'll show you how to toggle in a simple program on the DEC PDP-8 or the PiDP-8, or
in a front-panel simulator named BlinkenBone if you lack the hardware. I have a replica of the
PDP-8/I (the PiDP-8) but lacked the actual knowledge on the front panel and switches to get started
and do something cool. This guide has step by step instructons, with pictures, and basic explanation.
After all, what is an expensive blinking light panel without fun stuff to toggle in?

As you might know, I'm a fan of the PDP line of computers and legacy systems in general.
Mainframes, homecomputers, you name it and I probably like it. Add flashing lights, panels and big
controls to it and you have my attention in no time.

Plus, in previous jobs I've worked on mainframes, VAX and PDP systems and the emulators used to
keep those systems running on modern hardware. Think hospitals, banks, insurance companies,
train signalling control and the likes. So, the interest did not spawn from nowhere.

Oscar Vermeulen created an amazing replica of the PDP-8/I. It's a front panel with working
switches and LED's, plus a simple Raspberry Pi running the SIMH emulator. I've written multiple
articles on the PDP and PiDP-8 and I like the device a lot in general.

If you like this article, consider sponsoring me by trying out a Digital Ocean VPS. With this link
you'll get $100 credit for 60 days). (referral link)

Backstory

I did however only use the serial console and SSH to control the PDP-8 computer. Since I'm
managing a lot of Linux/UNIX systems that's what I'm familiar with. But, the PiDP-8 (and the PDP-
8/I) has a front panel with switches and lights. The lights show the different parts of the system, like
the memory, program counter and contents of the registers and the switches allow you to manually
control all those aspects.

There is little documentation on using those switches, except for the excellent manuals from DEC.
No simple, get started using the switches guide. This page aims to solve that by showing you, step
by step, how to toggle in a very, very simple program, by hand. What it does? It manually moves a
bit through the Accumulator lamps.

I found the program and tutorial on this page, it is from the BlinkenBone author. This page is based
on that, but hopefully, geared more to new users.

This guide covers the BlinkenBone panel simulator, explains the Switches, explains the Lamps
(Register Indicators), explains the program and then starts with the step by step guide to toggle that
in.

BlinkenBone

BlinkenBone is another super nice project which provides the front panels of various PDP
computers as a JAVA based GUI and backend server. It describes itself as an architecture
to connect simulators of vintage computers with "Blinkenlight

panels".

http://retrocmp.com/projects/blinkenbone/simulated-panels/251-blinkenbone-playing-with-the-pdp8i
https://www.digitalocean.com/?refcode=7435ae6b8212
https://www.digitalocean.com/?refcode=7435ae6b8212
https://raymii.org/s/articles/Running_TSS_8_on_the_DEC_PiDP-8_i_and_SIMH.html
https://raymii.org/s/articles/Running_ADVENT-on-the-PDP-8-with-SIMH.html
http://obsolescence.wix.com/obsolescence#!pidp-8/cbie

If you don't have a PDP-8 or PiDP-8 replica, you can use BlinkenBone to still be able to use the
front panel of such an actual machine. This page has a lot of very detailed information on the PDP-
8/I and it's front panel. It is a very good read.

The above picture is a screenshot of BlinkenBone running on my machine showing the PDP-8/I
front panel while running Adventure. I have the luck of having an actual replica, the PiDP-8, but for
those without one, this is an excellent alternative.

Read this page for installation instructions on BlinkenBone. It is Java software, so it runs on
Windows, Mac and Linux. There is also a special Raspberry Pi version. Installation is very easy,
download the archive, extract it and run the starting script.

BlinkenBone also has a few other simulated panels, for example for the PDP-11/70, PDP-10 KI10
and a PDP-11/20. Please make some time to play with those since it's awesome.

Jorg Hoppe, behind the BlinkenBone, noted that it is an excellent idea and a great experience to run
the BlinkenBone software on a large touchscreen. Quoting, "Operating the panel in original size on
a 23 inch screen with your fingers is absolutely worth the extra $$$. (I use an Acer 232TL under
Win10).". I did try it myself on a small Asus Transformer tablet running Windows 10, 10 inch, and
even that is a very nice experience.

http://retrocmp.com/projects/blinkenbone/blinkenbone-software/176-blinkenbone-download-and-run-simulated-panels-for-free
http://retrocmp.com/projects/blinkenbone/simulated-panels/248-blinkenbone-simulated-pdp8i-panel

Switches and Lamps

An actual PDP-8/I front panel.

I'll use the term PDP-8 further on in the tutorial, but by that I also mean the PiDP-8 or the
BlinkenBone GUI.

The below sections cover the functions of the switches and the lamps. Skip over it if you just want
to start toggling.

Front Panel switches

The front panel of the PDP-8/I has 26 switches. From left to right, the first three control the Data

Field (DF). DF determines the core memory field of data storage and retrieval.

The second three control the Instruction Field (IF). IF determines the core memory field

from which instructions are to be taken.

The third, fourth, fifth and sixth pair of switches control the Switch Register (SR). The

Switch Register provides a means of manually setting a 12-bit word and load that into the PC
(program counter) by pressing the Load Add key or load the content into the MB (Memory Buffer)

and core memory with the Dep key.

The last switches are, from left to right, in order the following.

• Start: Starts the program by turning off the program interrupt circuits clearing the AC

(Accumulator) and L (Link), setting the Fetch state, and starts the central processor.

• Load Add (Load Address): This key transfers the content of SR (Switch Register) into PC

(Program Counter), the content of INST FIELD switches into IF, the content of the DATA

FIELD switches into DF, and clears the major state flip-flops.

• Dep (Deposit): This key transfers the content of SR (Switch Register) into MB (Memory

Buffer) and core memory at the address specified by the current content of PC (Program

Counter). The major state flip-flops are cleared. The contents of PC (Program Counter) is

then incremented by one to allow storing of information in sequential core memory
addresses by repeated operation of the Dep key.

• Exam: This key transfers the content of core memory at the address specified by the content

of PC (Program Counter), into the MB (Memory Buffer). The content of the PC (Program

Counter) is then incremented by one to allow examination of the contents of sequential core
memory addresses by repeated operation of the Exam key. The major state flip-flop register

cleared. The MA (Memory Address) indicates the address of the data in the MB.

• Cont (Continue): This key sets the RUN flip-flop to continue the program in the state and

instruction designated by the lighted console indicators, at the address currently specified by
the PC (Program Counter) if key SS (Single Step) is not on.

• Stop: Causes the RUN flip-flop to be cleared at the end of the instruction in progress at the

time the key is pressed.

• Sing Step (Single Step): This key causes the RUN flip-flop to be cleared to disable the

timing circuits at the end of one cycle of operation. Thereafter, repeated operation of the
Cont key steps the program one cycle at a time so that the operator can observe the contents

of registers in each major state.

• Sing Inst (Single Instructon): This key allows execution of one instruction. When the

computer is started by pressing the Start or Cont key, the Sing Inst key causes the

RUN flip-flop to be cleared at the end of the last cycle of the current instruction. Thereafter,
repeated operation of the Cont key steps the program one instruction at a time.

Register Indicators Lamps

The Lamps are called Register Indicators. These are also explained below, from top to

bottom.

• PC (Program Counter): The PC contains the location of the next instruction to indicators be

performed.

• MA (Memory Address): Indicate the content of MA. Usually, the contents of MA indicators

denote the core memory address of the word currently or previously read or written. After
operation either the Dep or Exam key, the contents of MA indicate the core memory address

just examined or deposited into.

• MB (Memory Buffer): Indicates the content of MB. Usually, the contents of MB indicators

designate the word just written at the core memory address in MA.

• L (Link): Indicates the content of L.

• AC (Accumulator): Indicates the content of AC.

• MQ (Multiplier Quotient): Indicates the content of the multiplier quotient. MQ holds the

multiplier at the beginning of a multiplication and holds the least-significant half of the
product at the conclusion. It holds the least-significant half of the dividend at the start of
division and holds the quotient at the conclusion.

Major state indicators

These lamps indicate that the processor is currently performing or has performed such a cycle.
Fetch for example indicates that the processor is currently performing or has performed a Fetch

cycle.

Miscellaneous indicators

• Ion: Indicates the status of the INT.ENABLE flip-flop. When lit, the interrupt control is

enabled for information exchange with an I/O device.

• Pause: Indicates the status of the PAUSE flip-flop when lit. The PAUSE flip-flop is set for

2.75 microseconds by any IOT instruction that requires generation of IOP pulses or by any

EAE instruction that requires shifting of information.

• Run: Indicates the status of the RUN flip-flop. When lit, the internal timing circuits are

enabled and the machine performs instructions.

Instruction indicators

These lamps indicate that the processor is currently performing or has performed such an
instruction. For example, And indicates that the processor is currently performing or has performed

an And instruction.

The above sections were slightly adapted from this page.

The program to blink lamps

The program we are going to toggle in is a very simple program. It sets a bit in the accumulator and
HALT's. When we, the user, press the Cont switch, it shifts the bit to the left in the AC, and so on.

We are going to use an assembler to assemble the assembly code into binary. In this case we are
using palbart. You can download palbart here and read more on it here. In case the download site

ever goes down, I've mirrored the C code here and the linux executable here.

Below you can find the assembler code of the program:

/ shifter - manually move a bit through the Accumulator lamps
*100 / start addr
 CLA CLL IAC / Link=AC=0, AC++. AC now 1
LOOP,
 RAL / rotate the bit left through AC and Link
 HLT / wait for user to CONTinue
 JMP LOOP / again
$

There are comments in the code, and if you want to read more about the PDP-8 assembly
instruction set on this page named "What is the PDP-8 instruction set?". By reading that you
understand the code above a bit more.

Make sure you have downloaded palbart. Save the above code, for example in a file named

shifter.pal. Then run it through the assembler:

chmod +x ./palbart ./palbart shifter.pal
A file "shifter.lst" is produced:

/ shifter - manually move a bit through the Accumulator lamps Page 1

 1 / shifter - manually move a bit through the Accumulator lamps
 2
 3 0100 *100 / start addr
 4 00100 7301 CLA CLL IAC / Link=AC=0, AC++. AC now 1
 5 LOOP,
 6 00101 7004 RAL / rotate the bit left through AC and
Link
 7 00102 7402 HLT / wait for user to CONTinue
 8 00103 5101 JMP LOOP / again
 9
 10 $
 No detected errors
 No links generated

The first collumn represents the Address and the second column represents the (binary)

Contents of that register.

http://www.faqs.org/faqs/dec-faq/pdp8/section-3.html
https://raymii.org/s/inc/img/pidp8/palbart/palbart
https://raymii.org/s/inc/img/pidp8/palbart/palbart.c
http://www.bernhard-baehr.de/pdp8e/pal8.html
ftp://pdp8online.com/software/palbart/
http://retrocmp.com/projects/blinkenbone/simulated-panels/248-blinkenbone-simulated-pdp8i-panel

Step by step

If you like this article, consider sponsoring me by trying out a Digital Ocean VPS. With this link
you'll get a $5 VPS for 2 months free (as in, you get $10 credit). (referral link)

So, we have the memory addresses and the data, but how do we toggle that in? Start by firing up
your PiDP-8, PDP or start up the BlinkenBone.

After downloading and extracting BlinkenBone, navigate to that folder and, on Ubuntu, start the
prepare.sh script to install dependencies:

sudo bash prepare.sh

On other distro's, install java and rpcbind.

Start the PDP-8 with the ADVENT disk coupled:

sudo bash pdp8i_os8advent.sh

A Java window with the front panel opens, and the terminal starts up the SIMH emulator. Wait a
few moments until it is finished. The terminal shows the following:

WELCOME TO ADVENTURE!! WOULD YOU LIKE INSTRUCTIONS?

>

Above is a video of a screen recording showing the front panel while ADVENT is running. If it's
not loading, view it on Youtube.

Toggle!

Now on the panel (PDP-8, PiDP-8 or emulator) toggle the Stop switch. By toggle, I mean, push it

so that it changes state and push it again so that the state is back as it was before the first toggle.

After toggling the Stop switch, the Lamps should stop moving. We've stopped the execution of

ADVENT and OS/8.

The Switch Register switches are Octal. In this case that means that they represent 0 to 7 (8

possibilities). From left to right, a pair of three switches represent the values 4, 2 and 1. If you

toggle the rightmost switch, it contain the value 1. If you toggle the middle switch and the

rightmost switch, it will contain the value 3 and so on. Below is a picture to make it more clear:

Do note that the Dep switch is in the oposite position. In the pictures below it looks like it's always

toggled, and that is the case, so don't worry.

https://youtu.be/QKd69Avvuak
https://www.digitalocean.com/?refcode=7435ae6b8212
https://www.digitalocean.com/?refcode=7435ae6b8212

After we toggled the STOP switch, we can start toggling in the program. The first thing we do is

toggle in the value 100 and then toggle the Load Add switch to set the start address in the PC

(program counter):

The octal value 100 is represented by the switch positions 000 001 000 000.

The second instruction we toggle in is 7301 (Link=AC=0, AC++. AC now 1). The octal value

on the switches it: 111 011 000 001. Do note not to toggle the Load Add switch, but the

Dep switch. I made that mistake a few times at first. We are not loading that address, but we are

depositing the value in the address we loaded earlier. Below is a picture:

The third instruction we toggle in is 7004 (rotate the bit left through AC and

Link). The octal value is: 111 000 000 100. Picture below:

The fourth instruction is 7402 (wait for user to CONTinue). The octal value is: 111 100

000 010. Picture below:

The fifth instruction is 5101 (JMP to LOOP, start over). The octal value is: 101 001

000 001. Picture below:

The sixth instruction we are toggling in is the same as the first, 0100. Toggle the Load Add switch

to set the start address in the PC (program counter):

Now the program is in the memory of the PDP. By toggling in 0100 and then loading that address,
we make sure that when we toggle START, the PDP starts execution there.

So, the next thing to do is toggle the START switch. What happens is that the on the Accumulator

lamp row, all lamps turn of and one lights up. Then nothing happens. Toggle the Cont switch, then

the Lamp turns off and the Lamp left of it lights on. See the three examples below:

The basic flow is: set a bit, then start the loop which shifts that bit, then halts until the user toggles
the continue switch.

Here below is a recording showing the emulator running this program:

If it's not loading, view it on Youtube here.

That's all there is. I hope you have enjoyed this guide and enjoyed playing with the PDP-8.

https://youtu.be/PM0TmIf3vyQ

	Toggling in a simple program DEC PDP-8 and PiDP-8 using the switch register
	Table of Contents
	Backstory
	BlinkenBone
	Switches and Lamps
	Front Panel switches
	Register Indicators Lamps
	Major state indicators
	Miscellaneous indicators
	Instruction indicators

	The program to blink lamps

	chmod +x ./palbart ./palbart shifter.pal
	Step by step
	Toggle!

