
UNIX® SYSTEM V RELEASE 4

PROGRAMMER'S
GuidE: STREAMS

•UNIX • SYSTEM IABORATORIES

Copyright 1992, 1991 UNIX System Laboratories, Inc.

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T

All Rights Reserved

Printed in USA

Published by PT R Prentice Hall

Prentice-Hall, Inc.

A Paramount Communications Company

Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in

writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, USL as

sumes no liability to any party for any loss or damage caused by errors or omissions or by statements
of any kind in this document, its updates, supplements, or special editions, whether such errors are
omissions or statements resulting from negligence, accident, or any other cause. USL further assumes

no liability arising out of the application or use of any product or system described herein; nor any lia
bility for incidental or consequential damages arising from the use of this document. USL disclaims

all warranties regarding the information contained herein, whether expressed, implied or statu

tory, including implied warranties of merchantability or fitness for a particular purpose. USL

makes no representation that the interconnection of products in the manner described herein will not

infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting

or license to make, use or sell equipment constructed in accordance with this description.

USL reserves the right to make changes without further notice to any products herein to improve relia

bility, function, or design.

TRADEMARKS

Datakit is a registered trademark of AT&T.

Intel is a registered trademark of Intel Corporation.
Starlan is a registered trademark of AT&T.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.

XENIX is a registered trademark of Microsoft Corporation.

20 19 18 17 16 15 14 13 12 11

ISBN 0-13-020660-1

PRENTICE HALL

ORDERING INFORMATION

UNIX® SYSTEM V RELEASE 4.2 DOCUMENTATION

To order single copies of UNIX
®

SYSTEM V Release 4.2 documentation, please
call (515) 284-6761.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:

For bulk purchases in excess of 30 copies, please write to:

Corporate Sales Department
PTR Prentice Hall
113 Sylvan Avenue
Englewood Cliffs, N.J. 07632

or

Phone: (201) 592-2863
FAX: (201) 592-2249

ATTENTION GOVERNMENT CUSTOMERS:

For GSA and other pricing information, please call (201) 461-7107.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice�Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

®
AT&T UNIX System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User's and Administrator's Guide

UNIX® System V Release 4 Product Oveiview and Master Index

UNIX® System V Release 4 System Administrator's Guide
®

UNIX System V Release 4 System Administrator's Reference Manual

UNIX® System V Release 4 User's Guide

UNIX® System V Release 4 User's Reference Manual

General Programmer's Series

UNIX® System V Release 4 Programmer's Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer's Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer's Guide: Networking Interfaces

UNIX® System V Release 4 Programmer's Guide: POSIX Conformance

UNIX® System V Release 4 Programmer's Guide: System Seivices
and Application Packaging Tools

UNIX® System V Release 4 Programmer's Reference Manual

System Programmer's Series

UNIX® System V Release 4 ANSI C Transition Guide

UNIX® System V Release 4 BSD I XENIX® Compatibility Guide

UNIX® System V Release 4 Device Driver Interface I Driver- Kernel
Interface (DDI I DKI) Reference Manual

UNIX® System V Release 4 Migration Guide

UNIX® System V Release 4 Programmer's Guide: STREAMS

Available from Prentice Hall !i

1

2

3

4

5

Contents

Introduction
Introduction to This Guide

Overview of STREAMS
What Is STREAMS?
Basic Streams Operations
STREAMS Components
Mult iplexing
Benefits of STR EAMS

STREAMS Mechanism
STREAMS Mechanism Overview
Stream Construction

STREAMS Processing Routines
Put and Service Procedu res
An Asynchronous Protocol Stream Example

Messages
Messages
Message Structure
Message Queues and Message Priority
Service Interfaces
M essage Allocation and Freeing
Extended STREAMS Buffers

Table of Contents

1-1

2-1
2-5
2-9
2-15
2-20

3-1
3-3

4-1
4-4

5-1
5-4
5-15
5-34
5-54
5-60

Table of Contents

6

7

8

9

10

Pol l ing and Signal ing
l npuVOutput Polling
Stream as a Control ling Terminal

Overview of Modules and Drivers
Module and Driver Environment
Module and Driver ioctls
Flush Handling
Driver-Kernel Interface
Design Guidelines

Modules
Modules
Flow Control
Design Guidelines

Drivers
Drivers
Cloning
Loop-Around Driver
Design Guidelines

Multiplexing
Multiplexing
Connecting/Disconnecting Lower Streams
Multiplexor Construction Example
Multiplexing Driver

6-1
6-9

7-1
7-9
7-31
7-37
7-42

8-1
8-11
8-14

9-1
9-18
9-20
9-30

10-1
10-13
10-16
10-19

i i Programmer's Guide: STREAMS

-------------------- Table of Contents

1 1

12

A

B

c

Persistent Links
Design Guidelines

STREAMS-Based Pipes and FI FOS
STREAMS-based Pipes and FIFOs

STREAMS-Based Terminal Subsystem
STREAMS-based Terminal Subsystem
STREAMS-based Pseudo-Terminal Subsystem

Appendix A: STREAMS Data Structures
STREAMS Data Structures

Appendix B: Messag e Types
Message Types
Ordinary Messages
High Priority M essages

Appendix C: STREAMS Utilities
STREAMS Utilities
Utility Descriptions
Utility Routine Summary

Table of Contents

10-32
10-37

11-1

12-1
12-15

A-1

8-1
8-2
8-14

C-1
C-3
C-22

i i i

Table of Contents ---------------------

D

E

F

G

I

Iv

Appendix D: Debugging
Debugging

Appendix E: Configuration
Configuration

Appendix F: Man ual Pages
Manual Pages

Appendix G: Hardware Examples
Hardware Examples
382 STREAMS-based Ports Driver
382 STREAMS-based Console Driver
382 STREAMS-based XT Driver
Extended STREAMS Buffers

Glossary
Glossary

Index
Index

D-1

E-1

F-1

G-1
G-2
G-10
G-15
G-35

1-1

Programmer's Gulde: STREAMS

Figures and Tables

Figure 2·1 : Simple Stream
Figure 2-2: STREAMS-based Pipe
Figure 2-3: Stream to Communications Driver
Figure 2-4: A Message
Figure 2-5: Messages on a Message Queue
Figure 2-6: A Stream in More Detail
Figure 2-7: Many-to-one Multiplexor
Figure 2-8: One-to-many Multiplexor
Figure 2-9: Many-to-many Multiplexor
Figure 2-1 0: Internet Multiplexing Stream
Figure 2·1 1 : X.25 Multiplexing Stream
Figure 2-1 2: Protocol Module Portabi lity
Figure 2-1 3: Protocol Migration
Figure 2-1 4: Module Reusabi lity
Figure 3-1 : Upstream and Downstream Stream Construction
Figure 3-2: Stream Queue Relationship
Figure 3-3: Opened STREAMS-based Driver
Figure 3-4: Creating STREAMS-based Pipe
Figure 3-5: Case Converter Module
Figure 4·1 : Id le Stream Configuration for Example
Figure 4-2: Operational Stream for Example
Figure 4-3: Module Put and Service Procedures
Figure 5-1 : Message Form and Linkage
Figure 5-2: Message Ordering on a Queue
Figure 5-3: Message Ordering with One Priority Band
Figure 5-4: Data Structure Linkage on non-EFT Systems
Figure 5-5: Flow Control
Figure 5-6: Protocol Substitution
Figure 5-7: Service Interface
Figure 7-1 ': Flushing The Write-Side of A Stream
Figure 7-2: Flushing The Read-Side of A Stream
Figure 7-3: Interfaces Affecting Drivers
Figure 9-1 : Device Driver Streams
Figure 9-2: Loop-Around Streams
Figure 1 0-1 : Protocol Multiplexor

Table of Contents

2-2
2-3
2-7
2-10
2-11
2-13
2-15
2-16
2-16
2-17
2-18
2-22
2-23
2-24
3-3
3-4
3-7
3-9
3-13
4-5
4-7
4-9
5-7
5-15
5-16
5-25
5-29
5-36
5-37
7-33
7-34
7-38
9-8
9-21
10-3

v

Table of Contents

Figure 1 0-2: Before Link
Figure 1 0-3: IP Multiplexor After First Link
Figure 1 0-4: IP Multiplexor
Figure 1 0-5: TP Multiplexor
Figure 1 0-6: I nternet Multiplexor Before Connecting
Figure 1 0-7: I nternet Multiplexor After Connecting
Figure 1 0-8: open() of MUXdriver and Driver1
Figure 1 0-9: Multiplexor After I PLINK
Figure 1 0-1 0 : Other Users Opening a MUXdriver
Figure 1 1 -1 : Pushing Modules on a STREAMS-based Pipe
Figure 1 1 -2 : Server Sets Up a Pipe
Figure 1 1 -3: Processes X and Y Open /usr/tosero
Figure 1 2-1 : STREAMS-based Terminal Subsystem
Figure 1 2-2: Pseudo-tty Subsystem Architecture
Figure B-1 : M_PROTO and M_PCPROTO Message Structure
Figure D-1 : Error and Trace Logging
Figure G-1 : STREAMS-based XT Driver (before l ink)
Figure G-2: STREAMS-based XT Driver (after l ink)
Figure G-3: STREAMS-based XT Driver
Figure G-4: STREAMS-based XT Driver over Starlan
Figure G-5 : STREAMS-based XT Driver Data Flow
Figure G-6: UNIX 110 on 382
Figure G-7: UNIX 1/0 on a 386 Box

10-5
10-6
10-7
10-9
10-16
10-17
10-33
10-34
1 0-35
1 1 -3
11-11
11-12
12-2
12-16
B-8
D-18
G-16
G-1 7
G-1 8
G-20
G-27
G-36
G-38

vi Programmer's Gulde: STREAMS

1 Introduction

Introduction to This Guide
Audience
Organization
Conventions Used
Other Documentation

Table of Contents

1 -1
1 -1
1 -1
1 -3
1 -4

,., .. :···

. ., . .. · · · . .. =. : ·'

._ ;;,, . ,;· •. !.

. . :_. : �

'", ;-:

- ··· . .

:_::: -.
. . � . .

:_.-._ -"' '• ;:
•::. .

. ;,,·. ::· - : .·:
. . . _

. . . . ·

.-.. � .·

· �
-

I ntrod uct ion to Th is Gu ide

This guide provides information to developers on the use of the STREAMS
mechanism at user and kernel levels.

STREAMS was incorporated in UNIX® System V Release 3 to augment the
character input/output (1/0) mechanism and to support development of com
munication services.

STREAMS provides developers with integral functions, a set of utility routines,
and facilities that expedite software design and implementation.

Audience

The guide is intended for network and systems programmers, who use the
STREAMS mechanism at user and kernel levels for UNIX system communica
tion services.

Readers of the guide are expected to possess prior knowledge of the UNIX sys
tem, programming, networking, and data communication.

Organization

This guide has several chapters, each discussing a unique topic. Chapters 2, 3,
and 4 have introductory information and can be ignored by those already fami
liar with STREAMS concepts and facilities.

• Chapter 1, ''Introduction," describes the organization and purpose of the
guide. It also defines an intended audience and an expected background
of the users of the guide.

• Chapter 2, "Overview of STREAMS," presents an overview and the
benefits of STREAMS.

• Chapter 3, "STREAMS Mechanism," describes the basic operations for
constructing, using, and dismantling Streams. These operations are per
formed using open(2), close(2), read(2), write(2), and ioctl(2).

• Chapter 4, "STREAMS Processing Routines," gives an overview of the
STREAMS put and service routines.

Introduction 1 -1

Introduction to This Gulde

1 -2

• Chapter 5, "Messages," discusses STREAMS messages, their structure,
linkage, queuing, and interfacing with other STREAMS components.

• Chapter 6, ''Polling and Signaling," describes how STREAMS allows user
processes to monitor, control, and poll Streams to allow an effective utili
zation of system resources.

• Chapter 7, "Overview of Modules and Drivers," describes the STREAMS
module and driver environment, ioctls, routines, declarations, flush han
dling, driver-kernel interface, and also provides general design guidelines
for modules and drivers.

• Chapter 8, "Modules," provides information on module construction and
function.

• Chapter 9, "Drivers," discusses STREAMS drivers, elements of driver flow
control, flush handling, cloning, and processing.

• Chapter 10, "Multiplexing," describes the STREAMS multiplexing facility.

• Chapter 11, "STREAMS-based Pipes and FIFOs," provides information on
creating, writing, reading, and closing of STREAMS-based pipes and
FIFOs and unique connections.

• Chapter 12, "STREAMS-based Terminal Subsystem," discusses
STREAMS-based terminal and and pseudo-terminal subsystems.

• Appendix A, "STREAMS Data Structures," summarizes data structures
commonly used by STREAMS modules and drivers.

• Appendix B, "Message Types," describes STREAMS messages and their
use.

• Appendix C, "STREAMS Utilities," describes STREAMS utility routines
and their usage.

\
• Appendix D, ''Debugging," provides debugging aids for developers.

• Appendix E, "Configuration," describes how modules and drivers are
configured into the UNIX system, tunable parameters, and the autopush
facility.

• Appendix F, ''Manual Pages," has STREAMS related manual pages.

Programmer's Gulde: STREAMS

Introduction to This Guide

• Appendix G, "Hardware Examples," provides information pertaining to
certain hardware types, for example the AT&T 3B2, used in the STREAMS
environment.

• "Glossary'' defines terms unique to STREAMS.

Conventions Used

Throughout this guide, the word "STREAMS" will refer to the mechanism and
the word "Stream" will refer to the path between a user application and a
driver. In connection with STREAMS-based pipes "Stream" refers to the data
transfer path in the kernel between the kernel and one or more user processes.

Examples are given to highlight the most important and common capabilities of
STREAMS. They are not exhaustive and, for simplicity, reference fictional
drivers and modules.

System calls, STREAMS utility routines, header files, and data structures are
given in bold, when they are mentioned in the text.

Variable names, pointers, and parameters are in italics. Routine, field, and struc
ture names unique to the examples are also in italics when they are mentioned
in the text.

Declarations and short examples are in constant width.

. T The ca�tio� sign is used to s�ow possible harm or damage to a system,
an apphcat1on, a process, a piece of hardware, etc .

Introduction 1 -3

Introduction to This Guide

The note sign is used to emphasize points of interest, to present parentheti
cal information, and to cite references to other documents and commands.

Other Documentation

Though the Programmer's Guide: STREAMS is a principal tool to aid in develop
ing STREAMS applications, readers are encouraged to obtain more information
on system calls used by STREAMS (section 2 manual pages), and STREAMS
utilities from section lM manual pages. STREAMS specific input-output control
(ioctl) calls are provided in streamio(7). STREAMS modules and drivers are
described on section 7 manual pages. STREAMS is also described to some
extent in the System V Interface Definition, Third Edition.

For a complete list of books about AT&T UNIX System V Release 4.0, see the
Product Overview and Master Index for this release.

1 -4 Programmer's Gulde: STREAMS

2 Overview of STREAMS

What Is STREAMS?

Basic Streams Operations

STREAMS Components
Queues
Messages

• Message Types
• Message Queueing Priority

Modules
Drivers

Multi plexing

Benefits of STREAMS
Standardized Service Interfaces
Manipulating Modules

• Protocol Portabil ity
• Protocol Substitution
• Protocol Migration
• Module Reusability

Table of Contents

2-1

2-5

2-9
2-9
2-9
2-1 0
2-1 1
2-1 2
2-1 4

2-1 5

2-20
2-20
2-20
2-21
2-22
2-22
2-23

. . , . ..

What Is STREAMS?

STREAMS is a general, flexible facility and a set of tools for development of
UNIX system communication services. It supports the implementation of ser
vices ranging from complete networking protocol suites to individual device
drivers. STREAMS defines standard interfaces for character input/ output
within the kernel, and between the kernel and the rest of the UNIX system. The
associated mechanism is simple and open-ended. It consists of a set of system
calls, kernel resources, and kernel routines.

The standard interface and mechanism enable modular, portable development
and easy integration of high performance network services and their com
ponents. STREAMS does not impose any specific network architecture. The
STREAMS user interface is upwardly compatible with the character 1/0 user
level functions such as open, close, read, write, and ioctl. Benefits of STREAMS
are discussed in more detail later in this chapter.

A Stream is a full-duplex processing and data transfer path between a STREAMS
driver in kernel space and a process in user space (see Figure 2-1). In the ker
nel, a Stream is constructed by linking a Stream head, a driver, and zero or
more modules between the Stream head and driver. The Stream head is the end
of the Stream nearest to the user process. All system calls made by a user level
process on a Stream are processed by the Stream head.

Pipes are also STREAMS-based. A STREAMS-based pipe (see Figure 2-2) is a
full-duplex (bidirectional) data transfer path in the kernel. It implements a con
nection between the kernel and one or more user processes and also shares pro
perties of STREAMS-based devices.

A STREAMS driver may be a device driver that provides the services of an
external 1/0 device, or a software driver, commonly referred to as a pseudo
device driver. The driver typically handles data transfer between the kernel and
the device and does little or no processing of data other than conversion
between data structures used by the STREAMS mechanism and data structures
that the device understands.

A STREAMS module represents processing functions to be performed on data
flowing on the Stream. The module is a defined set of kernel-level routines and
data structures used to process data, status, and control information. Data pro
cessing may involve changing the way the data are represented,
adding/ deleting header and trailer information to data, and/ or
packetizing/ depacketizing data. Status and control information includes signals
and input/ output control information. Each module is self-contained and func
tionally isolated from any other component in the Stream except its two

Overview of STREAMS 2-1

What Is STREAMS?

neighboring components. The module communicates with its neighbors by
passing messages. The module is not a required component in STREAMS,
whereas the driver is, except in a STREAMS-based pipe where only the Stream
head is required.

Figure 2·1 : Simple Stream

downstream

l

2-2

Stream Head

Module
(optional)

Driver

External Interface

User Space

Kernel Space

r
upstream

Programmer's Gulde: STREAMS

What Is STREAMS?

One or more modules may be inserted into a Stream between the Stream head
and driver to perform intermediate processing of messages as they pass between
the Stream head and driver. STREAMS modules are dynamically intercon
nected in a Stream by a user process. No kernel programming, assembly, or
link editing is required to create the interconnection.

Figure 2-2: STREAMS-based Pipe

User

Stream Head Kernel

STREAMS uses queue structures to keep information about given instances of a
pushed module or opened STREAMS device. A queue is a data structure that
contains status information, a pointer to routines processing messages, and
pointers for administering the Stream. Queues are always allocated in pairs;
one queue for the read-side and other for the write-side. There is one queue
pair for each driver and module, and the Stream head. The pair of queues is
allocated whenever the Stream is opened or the module is pushed (added) onto
the Stream.

Data are passed between a driver and the Stream head and between modules in
the form of messages. A message is a set of data structures used to pass data,
status, and control information between user processes, modules, and drivers.
Messages that are passed from the Stream head toward the driver or from the
process to the device, are said to travel downstream (also called write-side). Simi
larly, messages passed in the other direction, from the device to the process or
from the driver to the Stream head, travel upstream (also called read-side).

overview of STREAMS 2-3

What Is STREAMS?

A STREAMS message is made up of one or more message blocks. Each block is a
3-tuple consisting of a header, a data block, and a data buffer. The Stream head
transfers data between the data space of a user process and STREAMS kernel
data space. Data to be sent to a driver from a user process are packaged into
STREAMS messages and passed downstream. When a message containing data
arrives at the Stream head from downstream, the message is processed by the
Stream head, which copies the data into user buffers.

Within a Stream, messages are distinguished by a type indicator. Certain mes
sage types sent upstream may cause the Stream head to perform specific actions,
such as sending a signal to a user process. Other message types are intended to
carry information within a Stream and are not directly seen by a user process.

2-4 Programmer's Gulde: STREAMS

Basic Streams Operations

This section describes the basic set of operations for manipulating STREAMS
entities.

A STREAMS driver is similar to a traditional character 1/0 driver in that it has
one or more nodes associated with it in the file system and it is accessed using
the open system call. Typically, each file system node corresponds to a separate
minor device for that driver. Opening different minor devices of a driver will
cause separate Streams to be connected between a user process and the driver.
The file descriptor returned by the open call is used for further access to the
Stream. If the same minor device is opened more than once, only one Stream
will be created; the first open call will create the Stream, and subsequent open
calls will return a file descriptor that references that Stream. Each process that
opens the same minor device will share the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using the
write system call and receive data from the device using the read system call.
Access to STREAMS drivers using read and write is compatible with the tradi
tional character 1/0 mechanism

The close system call will close a device and dismantle the associated Stream
when the last open reference to the Stream is given up.

The following example shows how a simple Stream is used. In the example, the
user program interacts with a communications device that provides point-to
point data transfer between two computers. Data written to the device are
transmitted over the communications line, and data arriving on the line can be
retrieved by reading from the device.

Overview of STREAMS 2-5

Basic Streams Operations

In the example, /dev/comm/01 identifies a minor device of the communications
device driver. When this file is opened, the system recognizes the device as a
STREAMS device and connects a Stream to the driver. Figure 2-3 shows the
state of the Stream following the call to open.

2-6 Programmer's Gulde: STREAMS

Figure 2-3: Stream to Communications Driver

Stream
Head

Communications
Driver

Basic Streams Operations

----��i:�� -

Kernel Space

This example illustrates a user reading data from the communications device
and then writing the input back out to the same device. In short, this program
echoes all input back over the communications line. The example assumes that
a user is sending data from the other side of the communications line. The pro
gram reads up to 1024 bytes at a time, and then writes the number of bytes just
read.

The read call returns the available data, which may contain fewer than 1024
bytes. If no data are currently available at the Stream head, the read call blocks
until data arrive.

Similarly, the write call attempts to send count bytes to /dev/comm/01. How
ever, STREAMS implements a flow control mechanism that prevents a user from
exhausting system resources by flooding a device driver with data.

Flow control is a STREAMS mechanism that controls the rate of message transfer
among the modules, drivers, Stream head, and processes. Flow control is local
to each Stream and advisory (voluntary). It limits the number of characters that
can be queued for processing at any queue in a Stream. This mechanism limits
buffers and related processing at any queue and in any one Stream, but does
not consider buffer pool levels or buffer usage in other Streams. Flow control is
not applied to high priority messages (message priority will be discussed later).

Overview of STREAMS 2-7

Basic Streams Operations

If the Stream exerts flow control on the user, the write call blocks until flow
control has been relieved. The call will not return until it has sent count bytes to
the device. exit is called to terminate the user process. This system call also
closes all open files, thereby dismantling the Stream in this example.

2-8 Programmer's Gulde: STREAMS

STREAMS Components

This section gives an overview of the STREAMS components and discusses how
these components interact with each other. A more detailed description of each
STREAMS component is given in the later chapters.

Queues

A queue is an interface between a STREAMS driver or module and the rest of
the Stream. Queues are always allocated as an adjacent pair. The queue with
the lower address in the pair is a read queue, and the queue with the higher
address is used for the write queue.

A queue's service routine is invoked to process messages on the queue. It usu
ally removes successive messages from the queue, processes them, and calls the
put routine of the next module in the Stream to give the processed message to
the next queue.

A queue's put routine is invoked by the preceding queue's put and/or service
routine to add a message to the current queue. If a module does not need to
enqueue messages, its put routine can call the neighboring queue's put routine.
(Chapter 4 discusses the service and put routines in more detail.)

Each queue also has a pointer to an open and dose routine. The open routine of
a driver is called when the driver is first opened and on every successive open
of the Stream. The open routine of a module is called when the module is first
pushed on the Stream and on every successive open of the Stream. The close
routine of the module is called when the module is popped (removed) off the
Stream. The close routine of the driver is called when the last reference to the
Stream is given up and the Stream is dismantled.

Messages

All input and output under STREAMS is based on messages. The objects passed
between STREAMS modules are pointers to messages. All STREAMS messages
use two data structures (msgb and datab) to refer to the message data. These
data structures describe the type of the message and contain pointers to the data
of the message, as well as other information. Messages are sent through a
Stream by successive calls to the put procedure of each module or driver in the
Stream.

Overview of STREAMS 2-9

STREAMS Components

Message Types

All STREAMS messages are assigned message types to indicate their intended
use by modules and drivers and to determine their handling by the Stream
head. A driver or module can assign most types to a message it generates, and
a module can modify a message type during processing. The Stream head will
convert certain system calls to specified message types and send them down
stream, and it will respond to other calls by copying the contents of certain mes
sage types that were sent upstream.

Most message types are internal to STREAMS and can only be passed from one
STREAMS component to another. A few message types, for example M_DATA,
M_PROTO, and M_PCPROTO, can also be passed between a Stream and user
processes. M_DATA messages carry data within a Stream and between a
Stream and a user process. M_PROTO or M_PCPROTO messages carry both
data and control information.

As shown in Figure 2-4, a STREAMS message consists of one or more linked
message blocks that are attached to the first message block of the same message.

Figure 2-4: A Message

Message
- Message - Message Block

(type) Block Block
---->

Messages can exist stand-alone, as in Figure 2-4, when the message is being pro
cessed by a procedure. Alternately, a message can await processing on a linked
list of messages, called a message queue. In Figure 2-5, Message 2 is linked to
Message 1 .

2-1 0 Programmer's Gulde: STREAMS

Figure 2-5: Messages on a Message Queue

I
I
I
I
I
I

queue 1
header<- - - r-

Message
Block
(type)

Message
Block

Message
Block

Message
1

next
message

Message
Block
(type)

Message
Block

STREAMS Components

Message
2

next
- - - - - - - - - - -> message

When a message is on a queue, the first block of the message contains links to
preceding and succeeding messages on the same message queue, in addition to
the link to the second block of the message (if present). The message queue
head and tail are contained in the queue.

STREAMS utility routines enable developers to manipulate messages and mes
sage queues.

Message Queueing Priority

In certain cases, messages containing urgent information (such as a break or
alarm conditions) must pass through the Stream quickly. To accommodate
these cases, STREAMS provides multiple classes of message queuing priority.
All messages have an associated priority field. Normal (ordinary) messages
have a priority of zero. Priority messages have a priority greater. than zero.
High priority messages are high priority by virtue of their message type. The

Overview of STREAMS 2-1 1

STREAMS Components

priority field in high priority messages is unused and should always be set to
zero. STREAMS prevents high priority messages from being blocked by flow
control and causes a service procedure to process them ahead of all ordinary
messages on the queue. This results in the high priority message transiting each
module with minimal delay.

Non-priority, ordinary messages are placed at the end of the queue following all
other messages in the queue. Priority messages can be either high priority or
priority band messages. High priority messages are placed at the head of the
queue but after any other high priority messages already in the queue. Priority
band messages that enable support of urgent, expedited data are placed in the
queue after high priority messages but before ordinary messages.

Message priority is defined by the message type; once a message is created, its
priority cannot be changed. Certain message types come in equivalent high
priority/ordinary pairs (for example, M_PCPROTO and M_PROTO), so that a
module or device driver can choose between the two priorities when sending
information.

Modu les

A module performs intermediate transformations on messages passing between
a Stream head and a driver. There may be zero or more modules in a Stream
(zero when the driver performs all the required character and device process
ing).

Each module is constructed from a pair of queue structures (see "Au/ Ad" and
"Bu/Bd" in Figure 2-6). One queue performs functions on messages passing
upstream through the module ("Au" and "Bu" in Figure 2-6). The other set
("Ad" and "Bd") performs another set of functions on downstream messages.

Each of the two queues in a module will generally have distinct functions, that
is, unrelated processing procedures and data. The queues oper�te indepen
dently and "Au" will not know if a message passes through "Ad" unless "Ad" is
programmed to inform it. Messages and data can be shared only if the
developer specifically programs the module functions to perform the sharing.

Each queue can directly access the adjacent queue in the direction of message
flow (for example, "Au" to "Bu" or "Bd" to "Ad"). In addition, within a module,
a queue can readily locate its mate and access its messages and data.

2-1 2 Programmer's Gulde: STREAMS

Figure 2·6: A Stream in More Detai l

Module
B

Module
A

Message
"Ad"

QUEUE
"Ad"

Driver

User
Process

Stream
Head

STREAMS Components

___ u��r_Sp�� ___ _
Kernel Space

.

Routine

External

Interface

QUEUE
"Bu"

QUEUE
"Au"

Stream
End

Message
"Bu"

Each queue in a module points to messages, processing procedures, and data:

• Messages - These are dynamically attached to the queue on a linked list
("message queue", see "Ad" and "Bu" in Figure 2-6) as they pass through
the module.

Overview of STREAMS 2-1 3

STREAMS Components

• Processing procedures - A put procedure processes messages and must
be incorporated in each queue. An optional service procedure can also be
incorporated. According to their function, the procedures can send mes
sages upstream and/ or downstream, and they can also modify the private
data in their module.

• Data - Developers may use a private field in the queue to reference
private data structures (for example, state information and translation
tables).

In general, each of the two queues in a module has a distinct set of all of these
elements.

Drivers

STREAMS device drivers are an initial part of a Stream. They are structurally
similar to STREAMS modules. The call interfaces to driver routines are identical
to the interfaces used for modules.

There are three significant differences between modules and drivers. A driver
must be able to handle interrupts from the device, a driver can have multiple
Streams connected to it, and a driver is initialized/deinitialized via open and
close. A module is initialized/deinitialized via the !_PUSH ioctl and I_POP
iocU.

Drivers and modules can pass signals, error codes, and return values to
processes via message types provided for that purpose.

2-1 4 Programmer's Guide: STREAMS

Mu ltiplexing

Earlier, Streams were described a s linear connections o f modules, where each
invocation of a module is connected to at most one upstream module and one
downstream module. While this configuration is suitable for many applications,
others require the ability to multiplex Streams in a variety of configurations.
Typical examples are terminal window facilities, and intemetworking protocols
(which might route data over several subnetworks).

An example of a multiplexor is one that multiplexes data from several upper
Streams over a single lower Stream, as shown in Figure 2-7. An upper Stream is
one that is upstream from a multiplexor, and a lower Stream is one that is down
stream from a multiplexor. A terminal windowing facility might be imple
mented in this fashion, where each upper Stream is associated with a separate
window.

Figure 2-7: Many-to-one Multiplexor

MUX

A second type of multiplexor might route data from a single upper Stream to
one of several lower Streams, as shown in Figure 2-8. An internetworking proto
col could take this form, where each lower Stream links the protocol to a dif
ferent physical network.

Overview of STREAMS 2·1 5

Multiplexing

Figure 2-8: One-to-many Multiplexor

MUX

A third type of multiplexor might route data from one of many upper Streams
to one of many lower Streams, as shown in Figure 2-9.

Figure 2-9: Many-to-many Multip lexor

MUX

The STREAMS mechanism supports the multiplexing of Streams through spe
cial pseudo-device drivers. Using a linking facility, users can dynamically build,
maintain, and dismantle multiplexed Stream configurations. Simple configura
tions like the ones shown in three previous figures can be further combined to
form complex, multi-level multiplexed Stream configurations.

2-1 6 Programmer's Gulde: STREAMS

Multip lexing

STREAMS multiplexing configurations are created in the kernel by interconnect
ing multiple Streams. Conceptually, there are two kinds of multiplexors: upper
and lower multiplexors. Lower multiplexors have multiple lower Streams
between device drivers and the multiplexor, and upper multiplexors have multi
ple upper Streams between user processes and the multiplexor.

Figure 2-10 : Internet Multiplexing Stream

User Processes
AAA

- - - - - - - - - - - - - - - _,_,_I_ - - --- - - -- - - - - - -

Module 1

Driver 1

I I I
I I I
I I I

r _ _ _ 'ij_'ij_'Y_ _ _ _ ,
1 Upper 1
: Multiplexor or :
1 Module 1
L---- ____ .J

IP
Multiplexor

Driver

Module 2

Driver 2 Driver 3

Figure 2-10 is an example of the multiplexor configuration that would typically
occur where internetworking functions were included in the system. This
configuration contains three hardware device drivers. The IP (Internet Protocol)
is a multiplexor.

Overview of STREAMS 2-1 7

Multiplexing

The IP multiplexor switches messages among the lower Streams or sends them
upstream to user processes in the system. In this example, the multiplexor
expects to see the same interface downstream to Module 1, Module 2, and
Driver 3.

Figure 2-10 depicts the IP multiplexor as part of a larger configuration. The
multiplexor configuration, as shown in the dashed rectangle, would generally
have an upper multiplexor and additional modules. Multiplexors could also be
cascaded below the IP multiplexor driver if the device drivers were replaced by
multiplexor drivers.

Figure 2-1 1 : X.25 Multiplexing Stream

2-1 8

PVC
Processes

,,

SVC
Processes

'�
Processes

'�
--- ------------------

i v

Modules Modules Modu les

'� �
I

·� �
X.25

Packet Layer Protocol
Multiplexor Driver

'

-------- - ---- - ----r I
I I
1 Driver XYZ 1
I I
' or '
: Lower Multiplexor :
L -------------------�

Programmer's Gulde: STREAMS

Multip lexing

Figure 2-11 shows a multiplexor configuration where the multiplexor (or multi
plexing driver) routes messages between the lower Stream and one of the upper
Streams. This Stream performs X.25 multiplexing to multiple independent SVC
(Switched Virtual Circuit) and PVC (Permanent Virtual Orcuit) user processes.
Upper multiplexors are a specific application of standard STREAMS facilities
that support multiple minor devices in a device driver. This figure also shows
that more complex configurations can be built by having one or more multi
plexed drivers below and multiple modules above an upper multiplexor.

Developers can choose either upper or lower multiplexing, or both, when
designing their applications. For example, a window multiplexor would have a
similar configuration to the X.25 configuration of Figure 2-11, with a window
driver replacing Packet Layer, a tty driver replacing the driver X'IZ, and the
child processes of the terminal process replacing the user processes. Although
the X.25 and window multiplexing Streams have similar configurations, their
multiplexor drivers would differ significantly. The IP multiplexor of Figure 2-10
has a different configuration than the X.25 multiplexor, and the driver would
implement its own set of processing and routing requirements in each
configuration.

In addition to upper and lower multiplexors, more complex configurations can
be created by connecting Streams containing multiplexors to other multiplexor
drivers. With such a diversity of needs for multiplexors, it is not possible to
provide general purpose multiplexor drivers. Rather, STREAMS provides a
general purpose multiplexing facility. The facility allows users to set up the
inter-module/ driver plumbing to create multiplexor configurations of generally
unlimited interconnection.

Overview of STREAMS 2-1 9

Benefits of STREAMS

STREAMS provides a flexible, portable, and reusable set of tools for develop
ment of UNIX system communication services. STREAMS allows an easy crea
tion of modules that offer standard data communications services and the ability
to manipulate those modules on a Stream. From user level, modules can be
dynamically selected and interconnected; kernel programming, assembly, and
link editing are not required to create the interconnection.

STREAMS also greatly simplifies the user interface for languages that have com
plex input and output requirements. This is discussed in Chapter 12.

Standardized Service Interfaces

STREAMS simplifies the creation of modules that present a service interface to
any neighboring application program, module, or device driver. A service inter
face is defined at the boundary between two neighbors. In STREAMS, a service
interface is a specified set of messages and the rules that allow passage of these
messages across the boundary. A module that implements a service interface
will receive a message from a neighbor and respond with an appropriate action
(for example, send back a request to retransmit) based on the specific message
received and the preceding sequence of messages.

In general, any two modules can be connected anywhere in a Stream. However,
rational sequences are generally constructed by connecting modules with com
patible protocol service interfaces. For example, a module that implements an
X.25 protocol layer, as shown in Figure 2-12, presents a protocol service inter
face at its input and output sides. In this case, other modules should only be
connected to the input and output side if they have the compatible X.25 service
interface.

Manipulating Modu les

STREAMS provides the capabilities to manipulate modules from user level, to
interchange modules with common service interfaces, and to change the service
interface to a STREAMS user process. These capabilities yield further benefits
when implementing networking services and protocols, including:

2-20 Programmer's Gulde: STREAMS

Benefits of STREAMS

• User level programs can be independent of underlying protocols and phy
sical communication media.

• Network architectures and higher level protocols can be independent of
underlying protocols, drivers, and physical communication media.

• Higher level services can be created by selecting and connecting lower
level services and protocols.

The following examples show the benefits of STREAMS capabilities for creating
service interfaces and manipulating modules. These examples are only illustra
tions and do not necessarily reflect real situations.

Protocol Portabi l ity

Figure 2-12 shows how the same X.25 protocol module can be used with dif
ferent drivers on different machines by implementing compatible service inter
faces. The X.25 protocol module interfaces are Connection Oriented Network
Service (CONS) and Link Access Protocol - Balanced (LAPB).

Overview of STREAMS 2-21

Benefits of STREAMS

Figure 2-1 2: Protocol Module Portability

MACHINE A

- - - - - - - - - - - -

X.25
Protocol Layer

Module

'

- - - - - - - - - - - -

LAPB
Driver

Machine A

Protocol Substitution

CONS
INTERFACE

SAME
MODULE

LAPB
INTERFACE

DIFFERENT
DRNER

MACHINE B

- - - - - - - - - - - -

X.25
Protocol Layer

Module

- - - - - - - - - - - -

w
LAPB

'

Driver
Machine B

'

Alternate protocol modules (and device drivers) can be interchanged on the
same machine if they are implemented to an equivalent service interface.

Protocol Migration

Figure 2-13 illustrates how STREAMS can move functions between kernel
software and front end firmware. A common downstream service interface
allows the transport protocol module to be independent of the number or type
of modules below. The same transport module will connect without
modification to either an X.25 module or X.25 driver that has the same service
interface.

By shifting functions between software and firmware, developers can produce
cost effective, functionally equivalent systems over a wide range of
configurations. They can rapidly incorporate technological advances. The same
transport protocol module can be used on a lower capacity machine, where

2-22 Programmer's Gulde: STREAMS

Benefits of STREAMS

economics may preclude the use of front-end hardware, and also on a larger
scale system where a front-end is economically justified.

Figure 2-13 : Protocol Migration

Class 1
Transport
Protocol

'

- - - - - - - - - - - - - -,�

X.25
Packet Layer

Protocol

·�

,

LAPB
- Driver -

\

Module Reusability

SAME
MODULES

CONS
- - -

Interlace
- - -

KERNEL

HARDWARE

Class 1
Transport
Protocol

I

- - - - - - - - - - - -
- -

'�
I ,

X.25
- Packet Layer

....
Driver

I

Figure 2-14 shows the same canonical module (for example, one that provides
delete and kill processing on character strings) reused in two different Streams.
This module would typically be implemented as a filter, with no downstream
service interface. In both cases, a tty interface is presented to the Stream's user
process since the module is nearest the Stream head.

Overview of STREAMS 2-23

Benefits of STREAMS

Figure 2-1 4: Module Reusablllty

2-24

User
Process

- - - - - � - - - - -
j

I

Canonical
Module

,,

�

Terminal
Emulator
Module

'

Class 1
Transport
Protocol

"

I

X.25
Packet Layer

Protocol

LAPB
Driver

SAME
INTERFACE

User
Process

- - - - - - - - - - - - - - 1- - - - -

SAME
MODULE

Canonical
Module

j

Raw
TIY

Driver

Programmer's Guide: STREAMS

3 STR EAMS Mechanism

STREAMS Mechanism Overview
STREAMS System Calls

Stream Construction
Opening a STREAMS Device File
Creating a STREAMS-based Pipe
Adding and Removing Modules
Closing the Stream
Stream Construction Example

• Inserting Modu les
• Module and Driver Control

Table of Contents

3-1
3-1

3-3
3-5
3-8
3-1 0
3-1 1
3-1 1
3-1 1
3-1 4

•;..

· -· . -_ . . , ·

STREAMS Mechan ism Overview

This chapter shows how to construct, use, and dismantle a Stream using
STREAMS-related systems calls. General and STREAMS-specific system calls
provide the user level facilities required to implement application programs.
This system call interface is upwardly compatible with the traditional character
1/0 facilities. The open(2) system call will recognize a STREAMS file and create
a Stream to the specified driver. A user process can receive and send data on
STREAMS files using read(2) and write(2) in the same manner as with tradi
tional character files. The ioctl(2) system call enables users to perform functions
specific to a particular device. STREAMS ioctl commands [see streamio(7)] sup
port a variety of functions for accessing and controlling Streams. The last
close(2) in a Stream will dismantle a Stream.

In addition to the traditional ioctl commands and system calls, there are other
system calls used by STREAMS. The po11(2) system call enables a user to poll
multiple Streams for various events. The putmsg(2) and getmsg(2) system calls
enable users to send and receive STREAMS messages, and are suitable for
interacting with STREAMS modules and drivers through a service interface.

STREAMS provides kernel facilities and utilities to support development of
modules and drivers. The Stream head handles most system calls so that the
related processing does not have to be incorporated in a module or driver.

STREAMS System Cal ls

The STREAMS-related system calls are:

open(2) Open a Stream

close(2) Close a Stream

read(2) Read data from a Stream

write(2) Write data to a Stream

ioctl(2) Control a Stream

getmsg(2) Receive a message at the Stream head

putmsg(2) Send a message downstream

STREAMS Mechanism 3-1

STREAMS Mechanism Overview

po11(2)

pipe(2)

3-2

Notify the application program when selected events
occur on a Stream

Create a channel that provides a communication path
between multiple processes

Programmer's Guide: STREAMS

Stream Construction

STREAMS constructs a Stream a s a linked list of kernel resident data structures.
The list is created as a set of linked queue pairs. The first queue pair is the
head of the Stream and the second queue pair is the end of the Stream. The
end of the Stream represents a· device driver, pseudo device driver, or the other
end of a STREAMS-based pipe. Kernel routines interface with the Stream head
to perform operations on the Stream. Figure 3-1 depicts the upstream (read)
and downstream (write) portions of the Stream. Queue H2 is the upstream half
of the Stream head and queue Hl is the downstream half of the Stream head.
Queue E2 is the upstream half of the Stream end and queue El is the down
stream half of the Stream end.

Figure 3-1 : Upstream and Downstream Stream Construction

. ?.tr�� -���.4

. .

. .
; QUEUE Hl QUEUE H2 '.
. .
. .
.

(write) (read)

.

. .

. .

'. QUEUE El QUEUE E2 :
. .
. .
· · · · · · · · · · · · · · · ·stream.

E
nci' · · · · · · · · · · · · ·

At the same relative location in each queue is the address of the entry point, a
procedure to process any message received by that queue. The procedure for
queues Hl and H2 process messages sent to the Stream head. The procedure
for queues El and E2, process messages received by the other end of the Stream,
the Stream end (tail). Messages move from one end to the other, from one
queue to the next linked queue, as the procedure specified by that queue is exe
cuted.

Figure 3-2 shows the data structures forming each queue: queue, qinit, qband,
module_info, and module_stat. The qband structures have information for
each priority band in the queue. The queue data structure contains various
modifiable values for that queue. The qinit structure contains a pointer to the
processing procedures, the module _info structure contains initial limit values,

STREAMS Mechanism 3-3

Stream Construction

and the module_stat structure is used for statistics gathering. Each queue in the
queue pair contains a different set of these data structures. There is a queue,
qinit, module_info, and module_stat data structure for the upstream portion of
the queue pair and a set of data structures for the downstream portion of the
pair. In some situations, a queue pair may share some or all of the data struc
tures. For example, there may be a separate qinit structure for each queue in
the pair and one module_stat structure that represents both queues in the pair.
These data structures are described in Appendix A.

Figure 3-2: Stream Queue Relationship

qband qband

Stream Head
. · · · · · · · · ·

....---'---�

queue
(write)

queue
(read)

downstream
·

l

3.4

q_next q_next

in
a. .---___,�· -· ·

_
· ·�· · · · ·

queue
(write)

queue
(read)

Stream End

qband qband

in o
qinit

module
stat

module
info

Programmer's Guide: STREAMS

Stream Construction

Figure 3-2 shows two neighboring queue pairs with links (solid vertical arrows)
in both directions. When a module is pushed onto a Stream, STREAMS creates
a queue pair and links each queue in the pair to its neighboring queue in the
upstream and downstream direction. The linkage allows each queue to locate
its next neighbor. This relation is implemented between adjacent queue pairs
by the q_next pointer. Within a queue pair, each queue locates its mate (see
dashed arrows in Figure 3-2) by use of STREAMS macros, since there is no
pointer between the two queues. The existence of the Stream head and Stream
end is known to the queue procedures only as destinations towards which mes
sages are sent.

Opening a STREAMS Device Fi le

One way to construct a Stream is to open [see open(2)] a STREAMS-based
driver file (see Figure 3-3). All entry points into the driver are defined by the
stream.tab structure for that driver. The stream.tab structure has a format as fol
lows:

The stream.tab structure defines a module or driver. st_rdinit points to the read
qinit structure for the driver and st_wdinit points to the driver's write qinit
structure. st_ muxrinit and st_ muxwinit point to the lower read and write q init
structures if the driver is a multiplexor driver.

If the open call is the initial file open, a Stream is created. (There is one Stream
per major/minor device pair.) First, an entry is allocated in the user's file table
and a vnode is created to represent the opened file. The file table entry is ini
tialized to point to the allocated vnode (see f_vnode in Figure 3-3) and the vnode
is initialized to specify a file of type character special.

STREAMS Mechanism 3-5

Stream Construction

Second, a Stream header is created from an stdata data structure and a Stream
head is created from a pair of queue structures. The content of stdata and
queue are initialized with predetermined values, including the Stream head pro
cessing procedures.

The snode contains the file system dependent information. It is associated with
the vnode representing the device. The s _commonvp field of the snode points to
the common device vnode. The vnode field, v _data, contains a pointer to the
snode. Instead of maintaining a pointer to the vnode, the snode contains the
vnode as an element. The sd_vnode field of stdata is initialized to point to the
allocated vnode. The v stream field of the vnode data structure is initialized to
point to the Stream header, thus there is a forward and backward pointer
between the Stream header and the vnode. There is one Stream header per
Stream. The header is used by STREAMS while performing operations on the
Stream. In the downstream portion of the Stream, the Stream header points to
the downstream half of the Stream head queue pair. Similarly, the upstream
portion of the Stream terminates at the Stream header, since the upstream half
of the Stream head queue pair points to the header. As shown in Figure 3-3,
from the Stream header onward, a Stream is constructed of linked queue pairs.

3-6 Programmer's Gulde: STREAMS

Stream Construction

Figure 3-3: Opened STREAMS-based Driver

/_node

vnode i-------,
v stream

v data

snode
streamtab

s_commonvp

v stream

vnode std a ta
common ------1

sd vnode ���
sd_wrq

v data

snode

sd strtab

. ��r:��m .tl��<;i

STREAMS Mechanism

queue
(write)

q_next

queue
(write)

queue
read)

q_next

queue
read)

· · · · · · · · · · · · ·sti-eam· En.a · · · · · · · · · · ·

3-7

Stream Construction

Next, a queue structure pair is allocated for the driver. The queue limits are
initialized to those values specified in the corresponding module_info structure.
The queue processing routines are initialized to those specified by the
corresponding qinit structure.

Then, the q_ next values are set so that the Stream head write queue points to
the driver write queue and the driver read queue points to the Stream head
read queue. The q_next values at the ends of the Stream are set to null. Finally,
the driver open procedure (located via its read qinit structure) is called.

If this open is not the initial open of this Stream, the only actions performed are
to call the driver open and the open procedures of all pushable modules on the
Stream. When a Stream is already open, further opens of the same device will
result in the open routines of all modules and the driver on the Stream being
called. Note that this is in reverse order from the way a Stream is initially set
up. That is, a driver is opened and a module is pushed on a Stream. When a
push occurs the module open routine is called. If another open of the same
device is made, the open routine of the module will be called followed by the
open routine of the driver. This is opposite from the initial order of opens
when the Stream is created.

Creating a STREAMS-based Pipe

In addition to opening a SlREAMS-based driver, a Stream can be created by
creating a pipe [see pipe(2)] . Since pipes are not character devices, STREAMS
creates and initializes a streamtab structure for each end of the pipe. As with
modules and drivers, the streamtab structure defines the pipe. The st _rdinit,
however, points to the read qinit structure for the Stream head and not for a
driver. Similarly, the st_wdinit points to the Stream head's write qinit structure
and not to a driver. The st muxrinit and st muxwinit are initialized to null - -

since a pipe cannot be a multiplexor driver.

When the pipe system call is executed, two Streams are created. STREAMS fol
lows the procedures similar to those of opening a driver; however, duplicate
data structures are created. That is, two entries are allocated in the user's file
table and two vnodes are created to represent each end of the pipe, as shown in
Figure 3-4. The file table entries are initialized to point to the allocated vnodes
and each vnode is initialized to specify a file of type FIFO.

3-8 Programmer's Gulde: STREAMS

Stream Construction

Next, two Stream headers are created from stdata data structures and two
Stream heads are created from two pairs of queue structures. The content of
stdata and queue are initialized with the same values for all pipes.

Each Stream header represents one end of the pipe and it points to the down
stream half of each Stream head queue pair. Unlike STREAMS-based devices,
however, the downstream portion of the Stream terminates at the upstream por
tion of the other Stream.

Figure 3-4: Creating STREAMS-based Pipe

file
table

stream tab ent stream tab
f_vnode

v stream v stream
vnode stdata s'd strtab vnode stdata s strtab

sd_wrq

Strea Head
.
. .
. .
. .
. .
. .
. .
. .
. .
. .

q_next

sd_wrq

Strea Head

q_next

The q_next values are set so that the Stream head write queue points to the
Stream head read queue on the other side. The q_ next values for the Stream
head's read queue points to null since it terminates the Stream.

STREAMS Mechanism 3-9

Stream Construction

Adding and Removing Modules

As part of constructing a Stream, a module can be added (pushed) with an ioctl
!_PUSH [see streamio(7)] system call. The push inserts a module beneath the
Stream head. Because of the similarity of STREAMS components, the push
operation is similar to the driver open. First, the address of the qinit structure
for the module is obtained.

Next, STREAMS allocates a pair of queue structures and initializes their con
tents as in the driver open.

Then, q_ next values are set and modified so that the module is interposed
between the Stream head and its neighbor immediately downstream. Finally,
the module open procedure (located via qinit) is called.

Each push of a module is independent, even in the same Stream. If the same
module is pushed more than once on a Stream, there will be multiple
occurrences of that module in the Stream. The total number of pushable
modules that may be contained on any one Stream is limited by the kernel
parameter NSTRPUSH (see Appendix E).

An ioctl I_ POP [see streamio(7)] system call removes (pops) the module
immediately below the Stream head. The pop calls the module close procedure.
On return from the module close, any messages left on the module's message
queues are freed (deallocated). Then, STREAMS connects the Stream head to
the component previously below the popped module and deallocates the
module's queue pair. I_PUSH and I_POP enable a user process to dynamically
alter the configuration of a Stream by pushing and popping modules as
required. For example, a module may be removed and a new one inserted
below the Stream head. Then the original module can be pushed back after the
new module has been pushed.

3-1 0 Programmer's Guide: STREAMS

---------------------- Stream Construction

Closing the Stream

The last close to a STREAMS file dismantles the Stream. Dismantling consists
of popping any modules on the Stream and closing the driver. Before a module
is popped, the close may delay to allow any messages on the write message
queue of the module to be drained by module processing. Similarly, before the
driver is closed, the close may delay to allow any messages on the write mes
sage queue of the driver to be drained by driver processing. If O _ NDELAY (or
O_NONBLOCK) [see open(2)] is clear, close will wait up to 15 seconds for each
module to drain and up to 15 seconds for the driver to drain. If 0 _ND ELA Y
(or 0 _ NONBLOCK) is set, the pop is performed immediately and the driver is
closed without delay. Messages can remain queued, for example, if flow control
is inhibiting execution of the write queue service procedure. When all modules
are popped and any wait for the driver to drain is completed, the driver close
routine is called. On return from the driver close, any messages left on the
driver's queues are freed, and the queue and stdata structures are deallocated. ' STREAMS frees only the messages contained on a message queue. Any

message or da!a structures used internally by the driver or module must be
freed by the driver or module close procedure.

Finally, the user's file table entry and the vnode are deallocated and the file is
closed.

Stream Construction Example

The following example extends the previous communications device echoing
example (see the section ''Basic Streams Operations" in Chapter 2) by inserting
a module in the Stream. The (hypothetical) module in this example can convert
(change case, delete, duplicate) selected alphabetic characters.

Insertin g Modules

An advantage of STREAMS over the traditional character 1/0 mechanism stems
from the ability to insert various modules into a Stream to process and manipu
late data that pass between a user process and the driver. In the example, the
character conversion module is passed a command and a corresponding string
of characters by the user. All data passing through the module are inspected

STREAMS Mechanism 3-1 1

Stream Construction

for instances of characters in this string; the operation identified by the com
mand is performed on all matching characters. The necessary declarations for
this program are shown below:

The first step is to establish a Stream to the communications driver and insert
the character conversion module. The following sequence of system calls
accomplishes this:

3-1 2 Programmer's Gulde: STREAMS

Stream Construction

The I_PUSH ioctl call directs the Stream head to insert the character conversion
module between the driver and the Stream head, creating the Stream shown in
Figure 3-5. As with drivers, this module resides in the kernel and must have
been configured into the system before it was booted.

Figure 3-5: case Converter Module

User
Process

Stream
Head

Character
Converter

Communications
Driver

_ _ _ _ l!�!:. �pace

Kernel Space

An important difference between STREAMS drivers and modules is illustrated
here. Drivers are accessed through a node or nodes in the file system and may
be opened just like any other device. Modules, on the other hand, do not
occupy a file system node. Instead, they are identified through a separate nam
ing convention, and are inserted into a Stream using I_PUSH. The name of a
module is defined by the module developer.

Modules are pushed onto a Stream and removed from a Stream in Last-In-First
Out (LIFO) order. Therefore, if a second module was pushed onto this Stream,
it would be inserted between the Stream head and the character conversion
module.

STREAMS Mechanism 3-1 3

Stream Construction

Module and Driver Control

The next step in this example is to pass the commands and corresponding
strings to the character conversion module. This can be accomplished by issu
ing ioctl calls to the character conversion module as follows:

ioctl requests are issued to S1REAMS drivers and modules indirectly, using the
I_S1R ioctl call [see streamio(7)] . The argument to I_S1R must be a pointer to a
strioctl structure, which specifies the request to be made to a module or driver.
This structure is defined in <stropts.h> and has the following format:

3-1 4 Programmer's Gulde: STREAMS

Stream Construction

where ic _ cmd identifies the command intended for a module or driver, ic _timout
specifies the number of seconds an I_STR request should wait for an acknowl
edgement before timing out, ic _len is the number of bytes of data to accompany
the request, and ic _dp points to that data.

In the example, two separate commands are sent to the character conversion
module. The first sets ic cmd to the command XCASE and sends as data the
string "AEIOU"; it will convert all uppercase vowels in data passing through the
module to lowercase. The second sets ic cmd to the command DELETE and
sends as data the string "xX"; it will delete all occurrences of the characters 'x'
and 'X' from data passing through the module. For each command, the value of
ic _timout is set to zero, which specifies the system default timeout value of 15
seconds. The ic _dp field points to the beginning of the data for each command;
ic _len is set to the length of the data.

I_STR is intercepted by the Stream head, which packages it into a message,
using information contained in the strioctl structure, and sends the message
downstream. Any module that does not understand the command in ic_cmd
will pass the message further downstream. The request will be processed by
the module or driver closest to the Stream head that understands the command
specified by ic _cmd. The ioctl call will block up to ic _timout seconds, waiting for
the target module or driver to respond with either a positive or negative
acknowledgement message. If an acknowledgement is not received in ic _timout
seconds, the ioctl call will fail.

Only one l_STR request can be active on a Stream at one time. Further
requests will block until the active l_STR request is acknowledged and the
system call completes.

The strioctl structure is also used to retrieve the results, if any, of an I_STR
request. If data are returned by the target module or driver, ic_dp must point to
a buffer large enough to hold that data, and ic _len will be set on return to indi
cate the amount of data returned.

The remainder of this example is identical to the example in Chapter 2:

STREAMS Mechanism 3-1 5

Stream Construction

Notice that the character conversion processing was realized with no change to
the communications driver.

The exit system call will dismantle the Stream before terminating the process.
The character conversion module will be removed from the Stream automati
cally when it is closed. Alternatively, modules may be removed from a Stream
using the I _POP ioctl call described in streamio(7). This call removes the top
most module on the Stream, and enables a user process to alter the
configuration of a Stream dynamically, by popping modules as needed.

A few of the important ioctl requests supported by STREAMS have been dis
cussed. Several other requests are available to support operations such as deter
mining if a given module exists on the Stream, or flushing the data on a Stream.
These requests are described fully in streamio(7).

3-1 6 Programmer's Gulde: STREAMS

4 STR EAMS Processing Routines

Put and Service Procedures
Put Procedure
Service Procedure

An Asynchronous Protocol Stream
Example
Read-Side Processing

• Driver Processing
• CHARPROC
• CANONPROC

Write-Side Processing
Analysis

Table of Contents

4-1
4-1
4-2

4-4
4-8
4-8
4-8
4-1 0
4-1 0
4-1 1

Put and Serv ice Procedu res

The put and service procedures in the queue are routines that process messages
as they transit the queue. The processing is generally performed according to
the message type and can result in a modified message, new message(s}, or no
message. A resultant message, if any, is generally sent in the same direction in
which it was received by the queue, but may be sent in either direction. Typi
cally, each put procedure places messages on its queue as they arrive, for later
processing by the service procedure.

A queue will always contain a put procedure and may also contain an associ
ated service procedure. Having both a put and service procedure in a queue
enables STREAMS to provide the rapid response and the queuing required in
multi-user systems.

The service and put routines pointed at by a queue, and the queues themselves,
are not associated with any process. These routines may not sleep if they can
not continue processing, but must instead return. Any information about the
current status of the queue must be saved by the routine before returning.

Put Procedure

A put procedure is the queue routine that receives messages from the preceding
queues in the Stream. Messages are passed between queues by a procedure in
one queue calling the put procedure contained in the following queue. A call to
the put procedure in the appropriate direction is generally the only way to pass
messages between STREAMS components. There is usually a separate put pro
cedure for the read and write queues because of the full-duplex operation of
most Streams. However, there can be a single put procedure shared between
both the read and write queues.

The put procedure allows rapid response to certain data and events, such as
echoing of input characters. It has higher priority than any scheduled service
procedure and is associated with immediate, as opposed to deferred, processing
of a message. The put procedure executes before the scheduled service pro
cedure of any queue is executed.

Each STREAMS component accesses the adjacent put procedure as a subroutine.
For example, consider that modA, modB, and modC are three consecutive com
ponents in a Stream, with modC connected to the Stream head. If modA receives
a message to be sent upstream, modA processes that message and calls modB' s
read put procedure, which processes it and calls modC's read put procedure,

STREAMS Processing Routines 4-1

Put and Service Procedures

which processes it and calls the Stream head's read put procedure. Thus, the
message will be passed along the Stream in one continuous processing sequence.
This sequence has the benefit of completing the entire processing in a short time
with low overhead (subroutine calls). On the other hand, if this sequence is
lengthy and the processing is implemented on a multi-user system, then this
manner of processing may be good for this Stream but may be detrimental for
others. Streams may have to wait too long to get their tum, since each put pro
cedure is called from the preceding one, and the kernel stack (or interrupt stack)
grows with each function call. The possibility of running off the stack exists,
thus panicking the system or producing undeterminate results.

Service Procedure

In addition to the put procedure, a service procedure may be contained in each
queue to allow deferred processing of messages. If a queue has both a put and
service procedure, message processing will generally be divided between the
procedures. The put procedure is always called first, from a preceding queue.
After completing its part of the message processing, it arranges for the service
procedure to be called by passing the message to the putq() routine. putq()
does two things: it places the message on the message queue of the queue (see
Figure 2-5) and links the queue to the end of the STREAMS scheduling queue.
When putq() returns to the put procedure, the procedure can return or continue
to process the message. Some time later, the service procedure will be automat
ically called by the STREAMS scheduler.

The STREAMS scheduler is separate and distinct from the UNIX system process
scheduler. It is concerned only with queues linked on the STREAMS scheduling
queue. The scheduler calls each service procedure of the scheduled queues one
at a time in a First-In-First-Out (FIFO) manner. . ' The scheduling of queue service routine� is machine dependent. However,

they are guaranteed to run before return ing to user level.

STREAMS utilities deliver the messages to the processing service routine in the
FIFO manner within each priority class (high priority, priority band, ordinary),
because the service procedure is unaware of the message priority and simply
receives the next message. The service routine receives control in the order it

4-2 Programmer's Guide: STREAMS

Put and Service Procedures

was scheduled. When the service routine receives control, it may encounter
multiple messages on its message queue. This buildup can occur if there is a
long interval between the time a message is queued by a put procedure and the
time that the STREAMS scheduler calls the associated service routine. In this
interval, there can be multiple calls to the put procedure causing multiple mes
sages to build up. The service procedure always processes all messages on its
message queue unless prevented by flow control.

Terminal output and input erase and kill processing, for example, would typi
cally be performed in a service procedure because this type of processing does
not have to be as timely as echoing. Use of a service procedure also allows pro
cessing time to be more evenly spread among multiple Streams. As with the
put procedure there can be a separate service procedure for each queue in a
STREAMS component or a single procedure used by both the read and write
queues.

Rules that should be observed in put and service procedures are listed in
Chapter 7.

STREAMS Processing Routines 4-3

An Asynchronous Protocol Stream Exam ple

In the following example, our computer runs the UNIX system and supports
different kinds of asynchronous terminals, each logging in on its own port. The
port hardware is limited in function; for example, it detects and reports line and
modem status, but does not check parity.

Communications software support for these terminals is provided via a
S1REAMS based asynchronous protocol. The protocol includes a variety of
options that are set when a terminal operator dials in to log on. The options are
determined by a STREAMS user process, getstrm, which analyzes data sent to it
through a series of dialogs (prompts and responses) between the process and
terminal operator.

The process sets the terminal options for the duration of the connection by
pushing modules onto the Stream or by sending control messages to cause
changes in modules (or in the device driver) already on the Stream. The options
supported include:

• ASCII or EBCDIC character codes

• For ASCII code, the parity (odd, even or none)

• Echo or not echo input characters

• Canonical input and output processing or transparent (raw) character
handling

These options are set with the following modules:

CHARPROC

CANONPROC

ASCEBC

4-4

Provides input character processing functions, includ
ing dynamically settable (via control messages passed
to the module) character echo and parity checking.
The module's default settings are to echo characters
and not check character parity.

Performs canonical processing on ASCII characters
upstream and downstream (note that this performs
some processing in a different manner from the stan
dard UNIX system character 1/0 tty subsystem).

Translates EBCDIC code to ASCII upstream and
ASCII to EBCDIC downstream.

Programmer's Gulde: STREAMS

An Asynchronous Protocol Stream Example

At system initialization a user process, getstrm, is created for each tty port.
getstrm opens a Stream to its port and pushes the CHARPROC module onto
the Stream by use of an ioctl !_PUSH command. Then, the process issues a
getmsg system call to the Stream and sleeps until a message reaches the
Stream head. The Stream is now in its idle state.

The initial idle Stream, shown in Figure 4-1, contains only one pushable
module, CHARPROC. The device driver is a limited function raw tty driver
connected to a limited-function communication port. The driver and port
transparently transmit and receive one unbuffered character at a time.

Figure 4-1 : Idle Stream Configuration for Example

getstrm

- - - - - - - - - - - - -

Stream Head

I/

CHARPROC
Module

'

11

TTY
Device Driver

Upon receipt of initial input from a tty port, getstrm establishes a connection
with the terminal, analyzes the option requests, verifies them, and issues
STREAMS system calls to set the options. After setting up the options,
getstrm creates a user application process. Later, when the user terminates

STREAMS Processing Routines 4-5

An Asynchronous Protocol Stream Example

that application, getstrm restores the Stream to its idle state by use of similar
system calls.

The following figure continues the example and associates kernel operations
with user-level system calls. As a result of initializing operations and push
ing a module, the Stream for port one has the following configuration:

4-6 Programmer's Gulde: STREAMS

An Asynchronous Protocol Stream Example

Figure 4·2: Operational Stream for Example

Stream Head

CANONPROC

Module

I�

CHARPROC
Module

I

'

TIY
Device Driver

As mentioned before, the upstream queue is also referred to as the read
queue reflecting the message flow direction. Correspondingly, downstream
is referred to as the write queue.

STREAMS Processing Routines 4-7

An Asynchronous Protocol Stream Example

Read-Side Processing

In our example, read-side processing consists o f driver processing, CHARPROC
processing, and CANONPROC processing.

Driver Processing

The user process has been blocked on the getmsg(2) system call while waiting
for a message to reach the Stream head, and the device driver independently
waits for input of a character from the port hardware or for a message from
upstream. Upon receipt of an input character interrupt from the port, the driver
places the associated character in an M_DATA message, allocated previously.
Then, the driver sends the message to the CHARPROC module by calling
CHARPROC's upstream put procedure. On return from CHARPROC, the
driver calls the allocb() utility routine to get another message for the next char
acter.

CHARPROC

CHARPROC has both put and service procedures on its read-side. In the exam
ple, the other queues in the modules also have both procedures:

4-8 Programmer's Guide: STREAMS

An Asynchronous Protocol Stream Example

Figure 4-3: Module Put and Service Procedures

write read

· · · · · · · · · . .
. .

CANONPROC : (put) (service)
Module I

I

v
(service)

�
I
I

(put)

. ·

. .

CHARPROC : (put) (service)
Module I

I

v
(service)

�
I
I

(put)
. .
.

When the driver calls CHARPROC's read queue put procedure, the procedure
checks private data flags in the queue. In this case, the flags indicate that echo
ing is to be performed (recall that echoing is optional and that we are working
with port hardware which can not automatically echo). CHARPROC causes the
echo to be transmitted back to the terminal by first making a copy of the mes
sage with a STREAMS utility routine. Then, CHARPROC uses another utility
routine to obtain the address of its own write queue. Finally, the CHARPROC
read put procedure calls its write put procedure and passes it the message copy.
The write procedure sends the message to the driver to effect the echo and then
returns to the read procedure.

This part of read-side processing is implemented with put procedures so that
the entire processing sequence occurs as an extension of the driver input charac
ter interrupt. The CHARPROC read and write put procedures appear as sub
routines (nested in the case of the write procedure) to the driver. This manner
of processing is intended to produce the character echo in a minimal time frame.

STREAMS Processing Routines 4-9

An Asynchronous Protocol Stream Example

After returning from echo processing, the CHARPROC read put procedure
checks another of its private data flags and determines that parity checking
should be performed on the input character. Parity should most reasonably be
checked as part of echo processing. However, for this example, parity is
checked only when the characters are sent upstream. This relaxes the timing in
which the checking must occur, that is, it can be deferred along with the canoni
cal processing. CHARPROC uses putq() to schedule the (original) message for
parity check processing by its read service procedure. When the CHARPROC
read service procedure is complete, it forwards the message to the read put pro
cedure of CANONPROC. Note that if parity checking was not required, the
CHARPROC put procedure would call the CANONPROC put procedure
directly.

CANONPROC

CANONPROC performs canonical processing. As implemented, all read queue
processing is performed in its service procedure so that CANONPROC's put
procedure simply calls putq() to schedule the message for its read service pro
cedure and then exits. The service procedure extracts the character from the
message buffer and places it in the "line buffer" contained in another M_DATA
message it is constructing. Then, the message which contained the single char
acter is returned to the buffer pool. If the character received was not an end
of-line, CANONPROC exits. Otherwise, a complete line has been assembled
and CANONPROC sends the message upstream to the Stream head which
unblocks the user process from the getmsg(2} call and passes it the contents of
the message.

Write-Side Processing

The write-side of this Stream carries two kinds of messages from the user pro
cess: ioctl messages for CHARPROC, and M_DATA messages to be output to
the terminal.

ioctl messages are sent downstream as a result of an ioctl(2) system call . When
CHARPROC receives an ioctl message type, it processes the message contents to
modify internal flags and then uses a utility routine to send an acknowledge
ment message upstream to the Stream head. The Stream head acts on the
acknowledgement message by unblocking the user from the ioctl.

4·1 0 Programmer's Gulde: STREAMS

An Asynchronous Protocol Stream Example

For terminal output, it is presumed that M_DATA messages, sent by write(2)
system calls, contain multiple characters. In general, STREAMS returns to the
user process immediately after processing the write call so that the process may
send additional messages. Flow control will eventually block the sending pro
cess. The messages can queue on the write-side of the driver because of charac
ter transmission timing. When a message is received by the driver's write put
procedure, the procedure will use putq() to place the message on its write-side
service message queue if the driver is currently transmitting a previous message
buffer. However, there is generally no write queue service procedure in a dev
ice driver. Driver output interrupt processing takes the place of scheduling and
performs the service procedure functions, removing messages from the queue.

Analysis

For reasons of efficiency, a module implementation would generally avoid plac
ing one character per message and using separate routines to echo and parity
check each character, as was done in this example. Nevertheless, even this
design yields potential benefits. Consider a case where alternate, more intelli
gent, port hardware was substituted. If the hardware processed multiple input
characters and performed the echo and parity checking functions of CHAR
PROC, then the new driver could be implemented to present the same interface
as CHARPROC. Other modules such as CANONPROC could continue to be
used without modification.

STREAMS Processing Routines 4-1 1

.-·.;.:

5 Messages

Messages 5-1

Message Types 5-1

Expedited Data 5-3

Message Structure 5-4

Message Linkage 5-6

Sending/Receiving Messages 5-8

Control of Stream Head Processing 5-1 2
• Read Options 5-1 3
• Write Offset 5-1 4

Message Queues and Message Priority 5-1 5

The queue Structure 5-1 9
• Using queue Information 5-21
• Queue Flags 5-21
• The equeue Structure 5-22
• The qband Structure 5-22
• Using equeue and qband Information 5-24

Message Processing 5-26
• Flow Control 5-28

Service I nterfaces 5-34

Service I nterface Benefits 5-35

Service Interface Library Example 5-38

Table of Contents

• Accessing the Service Provider 5-40
• Closing the Service Provider 5-43
• Sendi ng Data to Service Provider 5-44

Table of Contents

• Receiving Data
• Module Service Interface Example

Message Allocation and Freeing
Recovering From No Buffers

Extended STREAMS Buffers

5-45
5-47

5-54
5-57

5-60

Ii Programmer's Guide: STREAMS

Messages

Messages are the means of communication within a Stream. All input and out
put under STREAMS is based on messages. The objects passed between
Streams components are pointers to messages. All messages in STREAMS use
two data structures to refer to the data in the message. These data structures
describe the type of the message and contain pointers to the data of the mes
sage, as well as other information. Messages are sent through a Stream by suc
cessive calls to the put routine of each queue in the Stream. Messages may be
generated by a driver, a module, or by the Stream head.

Message Types

There are several different STREAMS messages (see Appendix B) and they are
defined in sys/stream.h. The messages differ in their intended purpose and
their queueing priority. The contents of certain message types can be
transferred between a process and a Stream by use of system calls.

Below, the message types are briefly described and classified according to their
queueing priority.

Ordinary Messages (also called normal messages):

• M BREAK

• M CTL

• M DATA

• M DELAY

• M IOCTL

• M PASSFP

• M PROTO

• M RSE

• M SETOPTS

• M SIG

Messages

Request to a Stream driver to send a "break"

Control/status request used for inter-module
communication

User data message for 1/0 system calls

Request a real-time delay on output

Control/status request generated by a Stream head

File pointer passing message

Protocol control information

Reserved for internal use

Set options at the Stream head, sent upstream

Signal sent from a module/ driver to a user

5-1

Messages

High Priority Messages:

• M COPYIN Copy in data for transparent ioctls, sent upstream

• M COPYOUT Copy out data for transparent ioctls, sent upstream

• M ERROR Report downstream error condition, sent upstream

• M FLUSH Flush module queue

• M HANGUP

• M IOCACK

• M IOCDATA

• M IOCNAK

• M PCPROTO

• M PCRSE

• M PCSIG

• M READ

• M START

• M START!

• M STOP

• M STOPI

Set a Stream head hangup condition, sent upstream

Positive ioct1(2) acknowledgement

Data for transparent ioctls, sent downstream

Negative ioctl(2) acknowledgement

Protocol control information

Reserved for internal use

Signal sent from a module/ driver to a user

Read notification, sent downstream

Restart stopped device output

Restart stopped device input

Suspend output

Suspend input

Im Transparent ioctls support applications developed prior to the introduction of � STREAMS.

5-2 Programmer's Guide: STREAMS

Messages

Expedited Data

The Open Systems Interconnection (OSI) Reference Model developed by the
International Standards Organization (ISO) and International Telegraph and
Telephone Consultative Committee (CCITT) provides an international standard
seven-layer architecture for the development of communication protocols.
AT&T adheres to this standard and also supports the Transmission Control Pro
tocol and Internet Protocol (TCP /IP).

OSI and TCP /IP support the transport of expedited data (see note below) for
transmission of high priority, emergency data. This is useful for flow control,
congestion control, routing, and various applications where immediate delivery
of data is necessary.

Expedited data are mainly for exceptional cases and transmission of control sig
nals. These are emergency data that are processed immediately, ahead of nor
mal data. These messages are placed ahead of normal data on the queue, but
after STREAMS high priority messages and after any expedited data already on
the queue.

Expedited data flow control is unaffected by the flow control constraints of nor
mal data transfer. Expedited data have their own flow control because they can
easily run the system out of buffers if their flow is unrestricted.

Drivers and modules define separate high and low water marks for priority
band data flow. (Water marks are defined for each queue and they indicate the
upper and lower limit of bytes that can be contained on the queue; see
M_SETOPTS in Appendix B). The default water marks for priority band data
and normal data are the same. The Stream head also ensures that incoming
priority band data are not blocked by normal data already on the queue. This is
accomplished by associating a priority with the messages. This priority implies
a certain ordering of the messages in the queue. (Message queues and priorities
are discussed later in this chapter.) . ' Within the STR�A�S mechanism and in this gu ide expedited data are also

referred to as priority band data .

Messages 5-3

Message Structu re

All messages are composed of one or more message blocks. A message block is
a linked triplet of two structures and a variable length data buffer. The struc
tures are a message block (msgb) and a data block (datab). The data buffer is a
location in memory where the data of a message are stored.

5-4 Programmer's Guide: STREAMS

Message Structure

Messages 5-5

Message Structure

UNIX System V Release 4.0 includes a feature called Expanded Fundamental
Types (EFT) that does not support previously designed modules and drivers. If
the system supports EFT, a variable _STYPES is defined and different data
structure definitions are used. If the system must maintain binary compatibility
with existing modules and drivers _STYPES should not be defined. (Appendix
A includes several STREAMS data structures.)

If the system does not support the Expanded Fundamental Types (non-EFT)
feature, the message priority band is stored in the data bloc:k. Conceptually the
band belongs in the message block since it is associated with the message and
not just with the data. However, the size of a message block is visible to
modules and drivers, so the band is placed in the data block instead. Modules
and drivers should have no knowledge of the size of the data block.

If the system supports the Expanded Fundamental Types feature, the message
priority is stored in the message block. To increase the portability of modules
and drivers between EFT and non-EFT systems, the field b _band is defined. This
field is the priority band. It is defined as b _ datap->db _band on non-EFT sys
tems.

The field b _band determines where the message is placed when it is enqueued
using the STREAMS utility routines. This field has no meaning for high priority
messages and is set to zero for these messages. When a message is allocated via
allocb(), the b _band field will be initially set to zero. Modules and drivers may
set this field if so desired.

Message Linkage

The message block is used to link messages on a message queue, link message
blocks to form a message, and manage the reading and writing of the associated
data buffer. The b_rptr and b_wptr fields in the msgb structure are used to
locate the data currently contained in the buffer. As shown in Figure 5-1, the
message block (mblk_t) points to the data block of the triplet. The data block
contains the message type, buffer limits, and control variables. STREAMS allo
cates message buffer blocks of varying sizes. db _base and db _lim are the fixed
beginning and end (+1) of the buffer.

5-6 Programmer's Guide: STREAMS

Message Structure

A message consists of one or more linked message blocks. Multiple message
blocks in a message can occur, for example, because of buffer size limitations, or
as the result of processing that expands the message. When a message is com
posed of multiple message blocks, the type associated with the first message
block determines the message type, regardless of the types of the attached mes
sage blocks.

Figure 5-1 : Message Form and Linkage

I
I
I
I
I
I

queue 1
<- - - -

header

Messages

Message
1

mblk t

mblk t

mblk t

\
'--�--' \

I

*
\

�

data
block
(type)

data
block

b next

b_prev

buffer

b_datap

buffer

Message
2

b next - - - - - = - - - - - - ->

mblk t
- - - - -bY,.iv- - - - - -

mblk t

mblk t

\
\

I

*
\

\

�

data
block
(type)

5-7

Message Structure

A message may occur singly, as when it is processed by a put procedure, or it
may be linked on the message queue in a queue, generally waiting to be pro
cessed by the service procedure. Message 2, as shown in Figure 5-1, links to
message 1 .

Note that a data block in message 1 is shared between message 1 and another
message. Multiple message blocks can point to the same data block to conserve
storage and to avoid copying overhead. For example, the same data block, with
associated buffer, may be referenced in two messages, from separate modules
that implement separate protocol levels. (Figure 5-1 illustrates the concept, but
data blocks would not typically be shared by messages on the same queue).
The buffer can be retransmitted, if required because of errors or timeouts, from
either protocol level without replicating the data. Data block sharing is accom
plished by means of a utility routine [see dupmsg() in Appendix CJ. STREAMS
maintains a count of the message blocks sharing a data block in the db _ref field.

STREAMS provides utility routines and macros, specified in Appendix C, to
assist in managing messages and message queues, and to assist in other areas of
module and driver development. A utility routine should always be used when
operating on a message queue or accessing the message storage pool. If mes
sages are manipulated on the queue without using the STREAMS utilities, the
message ordering may become confused and lead to inconsistent results.

Sending/Receiving Messages

Most message types can be generated by modules and drivers. A few are
reserved for the Stream head. The most commonly used messages are
M_DATA, M_PROTO, and M_PCPROTO. These messages can also be passed
between a process and the topmost module in a Stream, with the same message
boundary alignment maintained on both sides of the kernel. This allows a user
process to function, to some degree, as a module above the Stream and maintain
a service interface. M_PROTO and M_PCPROTO messages are intended to
carry service interface information among modules, drivers, and user processes.
Some message types can only be used within a Stream and cannot be sent or
received from user level.

Modules and drivers do not interact directly with any system calls except
open(2) and close(2). The Stream head handles all message translation and
passing between user processes and STREAMS components. Message transfer
between processes and the Stream head can occur in different forms. For

5-8 Programmer's Gulde: STREAMS

Message Structure

example, M_DATA and M_PROTO messages can be transferred in their direct
form by the getmsg(2) and putmsg(2) system calls. Alternatively, write(2)
causes one or more M_DATA messages to be created from the data buffer sup
plied in the call. M_DATA messages received at the Stream head will be con
sumed by read(2) and copied into the user buffer. As another example, M _SIG
causes the Stream head to send a signal to a process.

Any module or driver can send any message in either direction on a Stream.
However, based on their intended use in STREAMS and their treatment by the
Stream head, certain messages can be categorized as upstream, downstream, or
bidirectional. M_DATA, M_PROTO, or M_PCPROTO messages, for example,
can be sent in both directions. Other message types are intended to be sent
upstream to be processed only by the Stream head. Messages intended to be
sent downstream are silently discarded if received by the Stream head.

STREAMS enables modules to create messages and pass them to neighboring
modules. However, the read(2) and write(2) system calls are not sufficient to
enable a user process to generate and receive all such messages. First, read and
write are byte-stream oriented with no concept of message boundaries. To sup
port service interfaces, the message boundary of each service primitive must be
preserved so that the beginning and end of each primitive can be located. Also,
read and write offer only one buffer to the user for transmitting and receiving
STREAMS messages. If control information and data were placed in a single
buffer, the user would have to parse the contents of the buffer to separate the
data from the control information.

The putmsg system call enables a user to create messages and send them down
stream. The user supplies the contents of the control and data parts of the mes
sage in two separate buffers. The getmsg system call retrieves M_DATA or
M_PROTO messages from a Stream and places the contents into two user
buffers.

The format of putmsg is as follows:

int putmsg (
int fd,

Messages

struct st rbuf * ctlpt r ,
struct strbuf *datapt r ,
int flags) ;

5-9

Message Structure

fd identifies the Stream to which the message will be passed, ctlptr and dataptr
identify the control and data parts of the message, and flags may be used to
specify that a high priority message (M_PCPROTO) should be sent. When a
control part is present, setting flags to 0 generates an M_PROTO message. If
flags is set to RS_ HIPRI, an M _PCPROTO message is generated. ' The Stream h�ad guarantees that

.
the control p�rt of a message g��erated

by putmsg(2) 1s at least 64 bytes in length. This promotes reusab1hty of the
buffer. When the buffer is a reasonable size, modules and drivers may
reuse the buffer for other headers.

The strbuf structure is used to describe the control and data parts of a message,
and has the following format:

buf points to a buffer containing the data and len specifies the number of bytes
of data in the buffer. maxlen specifies the maximum number of bytes the given
buffer can hold, and is only meaningful when retrieving information into the
buffer using getmsg.

The getmsg system call retrieves M_DATA, M_PROTO, or M_PCPROTO mes
sages available at the Stream head, and has the following format:

int getmsg (
int fd,
struct strbuf * ctlpt r ,
st ruct st rbuf *datapt r ,
int * flagsp) ;

The arguments to getmsg are the same as those of putmsg except that the flagsp
parameter is a pointer to an int.

5-1 0 Programmer's Guide: STREAMS

Message Structure

putpmsg() and getpmsg() [see putmsg(2) and getmsg(2)] support multiple
bands of data flow. They are analogous to the system calls putmsg and getmsg.
The extra parameter is the priority band of the message.

putpmsg() has the following interface:

int putpmsg (
int fd,
st ruct st rbuf * ct lpt r ,
st ruct strbuf *datapt r ,
int band,
int flags) ;

The parameter band is the priority band of the message to put downstream. The
valid values for flags are MSG_HIPRI and MSG_BAND. MSG_BAND and
MSG_ HIPRI are mutually exclusive. MSG_ HIPRI generates a high priority mes
sage (M_PCPROTO) and band is ignored. MSG_BAND causes an M_PROTO or
M_DATA message to be generated and sent down the priority band specified
by band. The valid range for band is from 0 to 255 inclusive.

The call

putpmsg (fd , ctlpt r , datapt r , 0 , MSG_BAND) ;

is equivalent to the the system call

putmsg (fd, ctlpt r , datapt r , 0) ;

and the call

putpmsg (fd, ctlpt r , datapt r , 0 , MSG_HIPRI) ;

is equivalent to the system call

putmsg (fd, ctlpt r , dataptr , RS_HIPRI) ;

If MSG_ HIPRI is set and band is non-zero, putpmsg() fails with EINV AL.

Messages 5-1 1

Message Structure

getpmsg(} has the following format:

int getpmsg (
int fd,
st ruct st rbuf * ct lpt r ,
struct st rbuf *datapt r ,
int *bandp ,
int * flagsp) ;

bandp is the priority band of the message. This system call retrieves a message
from the Stream. H *flagsp is set to MSG_ HIPRI, getpmsg(} attempts to retrieve
a high priority message. If MSG_ BAND is set, getpmsg() tries to retrieve a mes
sage from priority band *bandp or higher. If MSG_ANY is set, the first message
on the Stream head read queue is retrieved. These three flags (MSG_ HIPRI,
MSG_ BAND, and MSG_ ANY) are mutually exclusive. On return, if a high
priority message was retrieved, *flagsp is set to MSG_ HIPRI and *bandp is set to
0. Otherwise, *flagsp is set to MSG_ BAND and *bandp is set to the band of the
message retrieved.

The call

int band = O ;
int flags = MSG_ANY ;
getpmsg (fd , ctlpt r , datapt r , &band, & flags) ;

is equivalent to

int flags = 0 ;
getmsg (fd, ct lpt r , datapt r , & flags) ;

If MSG_ HIPRI is set and *bandp is non-zero, getpmsgO fails with EINVAL.

Control of Stream Head Processing

The M _ SETOPTS message allows a driver or module to exercise control over
certain Stream head processing. An M_SETOPTS can be sent upstream at any
time. The Stream head responds to the message by altering the processing asso
ciated with certain system calls. The options to be modified are specified by the
contents of the stroptions structure (see Appendix A) contained in the message.

5-1 2 Programmer's Gulde: STREAMS

Message Structure

Six Stream head characteristics can be modified. Four characteristics correspond
to fields contained in queue (min/max packet sizes and high/low water marks).
The other two are discussed here.

Read Options

The value for read options (so _readopt) corresponds to two sets of three modes a
user can set via the I SROOPT ioctl [see streamio(7)] call. The first set deals
with data and message boundaries:

byte-stream (RNORM)
The read(2) call completes when the byte count is satisfied,
the Stream head read queue becomes empty, or a zero length
message is encountered. In the last case, the zero length
message is put back on the queue. A subsequent read will
return 0 bytes.

message non-discard (RMSGN)
The read(2) call completes when the byte count is satisfied or
at a message boundary, whichever comes first. Any data
remaining in the message are put back on the Stream head
read queue.

message discard (RMSGD)
The read(2) call completes when the byte count is satisfied or
at a message boundary. Any data remaining in the message
are discarded.

Byte-stream mode approximately models pipe data transfer. Message non
discard mode approximately models a TIY in canonical mode.

The second set deals with the treatment of protocol messages by the read(2) sys
tem call:

normal protocol (RPROTNORM)
The read(2) call fails with EBADMSG if an M_PROTO or
M _ PCPROTO message is at the front of the Stream head read
queue. This is the default operation protocol.

protocol discard (RPROTDIS)

Messages

The read(2) call will discard any M_PROTO or M_PCPROTO
blocks in a message, delivering the M_DATA blocks to the
user.

5-1 3

Message Structure

protocol data (RPROTDA TI

Write Offset

The read(2) call converts the M_PROTO and M_PCPROTO
message blocks to M_DATA blocks, treating the entire mes
sage as data.

The value for write offset (so_ wrof[) is a hook to allow more efficient data han
dling. It works as follows: In every data message generated by a write(2) sys
tem call and in the first M_DATA block of the data portion of every message
generated by a putmsg(2) call, the Stream head will leave so_ wroff bytes of space
at the beginning of the message block. Expressed as a C language construct:

bp->b_rptr = bp->b_datap->db_base +write offset.

The write offset value must be smaller than the maximum STREAMS message
size, STRMSGSZ (see the section titled "Tunable Parameters" in Appendix E).
In certain cases (e.g., if a buffer large enough to hold the offset+data is not
currently available), the write offset might not be included in the block. To han
dle all possibilities, modules and drivers should not assume that the offset exists
in a message, but should always check the message.

The intended use of write offset is to leave room for a module or a driver to
place a protocol header before user data in the message rather than by allocat
ing and prepending a separate message.

5-1 4 Programmer's Gulde: STREAMS

Message Queues and Message Priority

Message queues grow when the STREAMS scheduler is delayed from calling a
service procedure because of system activity, or when the procedure is blocked
by flow control. When called by the scheduler the service procedure processes
enqueued messages in a First-In-First-Out (FIFO) manner. However, expedited
data support and certain conditions require that associated messages (e.g., an
M _ERROR) reach their Stream destination as rapidly as possible. This is accom
plished by associating priorities to the messages. These priorities imply a cer
tain ordering of messages on the queue as shown in Figure 5-2. Each message
has a priority band associated with it. Ordinary messages have a priority of
zero. High priority messages are high priority by nature of their message type.
Their priority band is ignored. By convention, they are not affected by flow
control. The putq() utility routine places high priority messages at the head of
the message queue followed by priority band messages (expedited data) and
ordinary messages.

Figure 5-2: Message Ordering on a Queue

normal priority priority priority high
band 0 band 1 band 2 band n priority

messages messages messages messages messages

tail head

When a message is queued, it is placed after the messages of the same priority
already on the queue (i.e., FIFO within their order of queueing). This affects the
flow control parameters associated with the band of the same priority. Message
priorities range from 0 (normal) to 255 (highest). This provides up to 256 bands
of message flow within a Stream. Expedited data can be implemented with one
extra band of flow (priority band 1) of data. This is shown in Figure 5-3.

Messages 5-1 5

Message Queues and Message Priority

Figure 5-3: Message Ordering with One Priority Band

normal expedited high

tail (band 0) (band 1) priority head
messages messages messages

High priority messages are not subject to flow control. When they are queued
by putq(), the associated queue is always scheduled (in the same manner as any
queue; following all other queues currently scheduled). When the service pro
cedure is called by the scheduler, the procedure uses getq() to retrieve the first
message on queue, which will be a high priority message, if present. Service
procedures must be implemented to act on high priority messages immediately.
The above mechanisms-priority message queueing, absence of flow control,
and immediate processing by a procedure-result in rapid transport of high
priority messages between the originating and destination components in the
Stream.

Since the priority band information is contained in the data block on non-EFT
systems, care must be taken if a message is duplicated via dupb() or dupmsg().
This could lead to the possibility that a message may be out of order on the
queue. For example, a module may want take a message off its queue, dupli
cate it, and put the original message back on its queue. It may then pass the
new message on to the next module. If the priority band of the new message is
changed somewhere else on the Stream, the original message will be out of
order on the queue. Therefore, if the reference count of the message is greater
than one, it is recommended that the module copy the message via copymsg(),
free the duplicated message, and then change the priority of the copied mes
sage.

Several routines are provided to aid users in controlling each priority band of
data flow. These routines are flushband(), bcanput(), strqget(), and strqset().
The flushband() routine is discussed in the section titled "Flush Handling" in
Chapter 7, the bcanput() routine is discussed under "Flow Control" later in this
chapter, and the other two routines are described next. Appendix C also has a
description of these routines.

5-1 6 Programmer's Gulde: STREAMS

Message Queues and Message Priority

The strqget() routine allows modules and drivers to obtain information about a
queue or particular band of the queue. This provides a way to insulate the
STREAMS data structures from the modules and drivers. The format of the
routine is:

int strqget (q, what , pri, valp)
register queue_t *q;
qfields_t what ;
register unsigned char pri ;
long *valp;

The information is returned in the long referenced by valp. The fields that can
be obtained are defined by the following:

typedef enum qfields {
QHIWAT = 0 , /* q_hiwat or qb_hiwat */
QLOWAT = 1, /* q_lowat or qb_lowat */
�sz = 2 , /* q_maxpsz */
�NPSZ = 3 , /* q_minpsz */
QCOUNT = 4 , /* q_count or qb_count */
QFIRST = 5 , /* q_first or qb_first */
QLAST = 6, /* q_last or qb_last */
QFLAG = 7 , /* q_flag or qb_flag */
QBAD = 8

qfields_t ;

This routine returns 0 on success and an error number on failure.

The routine strqset() allows modules and drivers to change information about a
queue or particular band of the queue. This also insulates the STREAMS data
structures from the modules and drivers. Its format is:

int strqset (q, what , pri , val)
register queue_t *q;
qfields_t what ;
register unsigned char pri ;
long val;

The updated information is provided by val. strqset() returns 0 on success and
an error number on failure. If the field is intended to be read-only, then the
error EPERM is returned and the field is left unchanged. The following fields
are currently read-only: QCOUNT, QFIRST, QLAST, and QFLAG.

Messages 5-1 7

Message Queues and Message Priority

The ioctls I_FLUSHBAND, I_CKBAND, I_GETBAND, I_CANPUT, and
I_ATMARK support multiple bands of data flow. The ioctl I_FLUSHBAND
allows a user to flush a particular band of messages. It is discussed in more
detail in the section titled "Flush Handling" in Chapter 7.

The ioctl I_ CKBAND allows a user to check if a message of a given priority
exists on the Stream head read queue. Its interface is:

ioctl (fd, I_CKBAND, pri) ;

This returns 1 if a message of priority pri exists on the Stream hea9 read queue
and 0 if no message of priority pri exists. If an error occurs, -1 is returned.
Note that pri should be of type int.

The ioctl I_ GETBAND allows a user to check the priority of the first message on
the Stream head read queue. The interface is:

ioctl (fd, I_GETBAND, prip) ;

This results in the integer referenced by prip being set to the priority band of the
message on the front of the Stream head read queue.

The ioctl I CANPUT allows a user to check if a certain band is writable. Its
interface is:

ioctl (fd, I_CANPUT, pri) ;

The return value is 0 if the priority band pri is flow controlled, 1 if the band is
writable, and -1 on error.

The field b _flag of the msgb structure can have a flag MSGMARK that allows a
module or driver to mark a message. This is used to support TCP's (Transport
Control Protocol) ability to indicate to the user the last byte of out-of-band data.
Once marked, a message sent to the Stream head causes the Stream head to
remember the message. A user may check to see if the message on the front of
its Stream head read queue is marked or not with the I_ A TMARK ioctl. If a user
is reading data from the Stream head and there are multiple messages on the
read queue, and one of those messages is marked, the read(2) terminates when it
reaches the marked message and returns the data only up to that marked mes
sage. The rest of the data may be obtained with successive reads.

5-1 8 Programmer's Gulde: STREAMS

Message Queues and Message Prior ity

The ioctl I_ATMARK has the following format:

ioctl (fd, I_ATMARK, flag) ;

where flag may be either ANYMARK or LASTMARK. ANYMARK indicates
that the user merely wants to check if the message is marked. LASTMARK indi
cates that the user wants to see if the message is the only one marked on the
queue. If the test succeeds, 1 is returned. On failure, 0 is returned. If an error
occurs, -1 is returned.

The queue Structure

Service procedures, message queues, message priority, and basic flow control
are all intertwined in STREAMS. A queue will generally not use its message
queue if there is no service procedure in the queue. The function of a service
procedure is to process messages on its queue. Message priority and flow con
trol are associated with message queues.

The operation of a queue revolves around the queue structure:

Messages 5-1 9

Message Queues and Message Priority

Queues are always allocated in pairs (read and write); one queue pair per a
module, a driver, or a Stream head. A queue contains a linked list of messages.
When a queue pair is allocated, the following fields are initialized by
STREAMS:

5-20 Programmer's Gulde: STREAMS

Message Queues and Message Priority

• q_qinfo - from streamtab

• q_minpsz, q_maxpsz, q_hiwat, q_lowat - from module_info

Copying values from module_ info allows them to be changed in the queue
without modifying the streamtab and module_ info values.

q_count is used in flow control calculations and is the number of bytes in mes
sages on the queue.

Using queue Information

Modules and drivers should use S1REAMS utility routines (see Appendix C) to
alter q_first, q_last, q_count, and q_jlag.

Modules and drivers can change q_ptr, q_minpsz, q_maxpsz, q_hiwat, and q_lowat.

Modules and drivers can read but should not change q_qinfo, q_next, q_bandp,
and q_nband.

Modules and drivers should not touch q_link, q_pad1, and q_pad2.

Modules and drivers should not change any fields in the equeue structure.
They can only reference eq_bandp.

Queue Flags

Programmers using the STREAMS mechanism should be aware of the following
queue flags:

• QENAB - queue is enabled to run the service procedure (it is on the run
queue)

• QW ANTR - someone wants to read from the queue

• QW ANTW - someone wants to write to the queue

• QFULL - queue is full

• QREADR - set for read queues

• QUSE - queue has been allocated

• QNOENB - do not enable the queue when data are placed on it

Messages 5-21

Message Queues and Message Priority

• QBACK - queue has been back-enabled

• QOLD - queue supports module/driver interface to open/close developed
prior to UNIX System V Release 4.0

• QHLIST - the Stream head write queue is scanned

The equeue Structure

The extended queue structure equeue is only present for non-EFT systems. It
contains the field eq_link that is a pointer to the next queue for scheduling (i.e.,
when the queue is on the run queue). eq_bandp is a pointer to the flow control
information for the bands. The equeue structure is defined as follows:

The q band Structure

The queue flow information for each band is contained in a q band structure. It
is defined as follows:

5·22 Programmer's Gulde: STREAMS

Message Queues and Message Prior ity

This structure contains pointers to the linked list of messages on the queue.
These pointers, qb _first and qb _last, denote the beginning and end of messages
for the particular band. The qb _count field is analogous to the queue's q_count
field. However, qb _count only applies to the messages on the queue in the band
of data flow represented by the corresponding qband structure. In contrast,
q_count only contains information regarding normal and high priority messages.

Each band has a separate high and low water mark, qb _ hiwat and qb _lowat.
These are initially set to the queue's q_Jiiwat and q_lowat respectively. Modules
and drivers may change these values if desired through the strqset() function.
Three flags, QB_FULL, QB_WANTW, and QB_BACK, are defined for qb_flag.
QB_ FULL denotes that the particular band is full. QB_ WANTW indicates that
someone tried to write to the band that was flow controlled. QB_ BACK is set
when the service procedure runs as a result of being back-enabled because the
queue is no longer flow-controlled.

The qband structures are not preallocated per queue. Rather, they are allocated
when a message with a priority greater than zero is placed on the queue via
putq(), putbq(), or insq(). Since band allocation can fail, these routines return 0
on failure and 1 on success. Once a qband structure is allocated, it remains

Messages 5-23

Message Queues and Message Priority

associated with the queue until the queue is freed. strqset() and strqget() will
cause qband allocation to occur.

Using equeue and q band Information

The STREAMS utility routines should be used when manipulating the fields in
the equeue and qband structures. The routines strqset() and strqget() should
be used to access band information.

Drivers and modules should not change any fields in the equeue structure.
They are only allowed to reference eq_bandp.

Drivers and modules are allowed to change the qp _ hiwat and qp _lowat fields of
the qband structure.

Drivers and modules may only read the qb_count, qb_first, qb_last, and qb_flag
fields of the qband structure.

The pad fields should not be used in the qband structure; they are intended for
future use.

The following figure depicts a queue with two extra bands of flow.

5-24 Programmer's Gulde: STREAMS

---------------- Message Queues and Message Priority

Figure 5-4: Data Structure Linkage on non-EFT Systems

queue
structure

Messages

q_eq

q_jirst

q_last

normal
(band 0)

equeue
structure

eq_bandp

priority
band

1

qb_next

qb_jirst

qb_last

qband
structures

priority
band

2

messages

band 2

qb_next

qb_jirst

qb_last

high
priority

5-25

Message Queues and Message Priority

Message Processing

Put procedures are generally required in pushable modules. Service procedures
are optional. If the put routine enqueues messages, there must exist a
corresponding service routine that handles the enqueued messages. If the put
routine does not enqueue messages, the service routine need not exist.

The general processing flow when both procedures are present is as follows:

1 . A message is received by the put procedure in a queue, where some pro
cessing may be performed on the message.

2 . The put procedure places the message on the queue by use of the putqO
utility routine for the service procedure to perform further processing at
some later time.

3 . putq() places the message on the queue based on its priority.

4 . Then, putq() makes the queue ready for execution by the STREAMS
scheduler following all other queues currently scheduled.

5 . After some indeterminate delay (intended to be short), the STREAMS
scheduler calls the service procedure.

6 . The service procedure gets the first message (q_first) from the message
queue with the getq() utility.

7. The service procedure processes the message and passes it to the put pro
cedure of the next queue with putnext().

8. The service procedure gets the next message and processes it.

This processing continues until the queue is empty or flow control blocks
further processing. The service procedure returns to the caller.

y A service procedure m
.
ust never sleep since it has no user context. It

T
must always return to ds caller.

If no processing is required in the put procedure, the procedure does not have
to be explicitly declared. Rather, putq() can be placed in the qinit structure

5-26 Programmer's Gulde: STREAMS

Message Queues and Message Priority

declaration for the appropriate queue side to queue the message for the service
procedure, e.g.,

static struct qinit winit = { putq, modwsrv, } ;
More typically, put procedures will, at a minimum, process high priority mes
sages to avoid queueing them.

The key attribute of a service procedure in the STREAMS architecture is
delayed processing. When a service procedure is used in a module, the module
developer is implying that there are other, more time-sensitive activities to be
performed elsewhere in this Stream, in other Streams, or in the system in gen
eral. The presence of a service procedure is mandatory if the flow control
mechanism is to be utilized by the queue.

The delay for S1REAMS to call a service procedure will vary with implementa
tion and system activity. However, once the service procedure is scheduled, i t
is guaranteed to be called before user level activity is resumed.

If a module or driver wishes to recognize priority bands, the service procedure
is written to the following algorithm:

Messages 5-27

Message Queues and Message Priority

Flow Control

The STREAMS flow control mechanism is voluntary and operates between the
two nearest queues in a Stream containing service procedures (see Figure 5-5).
Messages are generally held on a queue only if a service procedure is present in
the associated queue.

Messages accumulate on a queue when the queue's service procedure process
ing does not keep pace with the message arrival rate, or when the procedure is
blocked from placing its messages on the following Stream component by the
flow control mechanism. Pushable modules contain independent upstream and
downstream limits. The Stream head contains a preset upstream limit (which
can be modified by a special message sent from downstream) and a driver may
contain a downstream limit.

Flow control operates as follows:

1 . Each time a STREAMS message handling routine (for example, putq)
adds or removes a message from a message queue, the limits are checked.
STREAMS calculates the total size of all message blocks (bp->b_wptr -
bp->b_rptr) on the message queue.

2 . The total is compared to the queue high water and low water values. If
the total exceeds the high water value, an internal full indicator is set for
the queue. The operation of the service procedure in this queue is not
affected if the indicator is set, and the service procedure continues to be
scheduled.

3 . The next part of flow control processing occurs in the nearest preceding
queue that contains a service procedure. In Figure 5-5, if D is full and C
has no service procedure, then B is the nearest preceding queue.

5-28 Programmer's Guide: STREAMS

Message Queues and Message Priority

Figure 5-5: Flow Control

QUEUE
B

I

v
Message
Queue

QUEUE
c

QUEUE
D

I

v
Message
Queue

4 . The service procedure in B uses a STREAMS utility routine to see if a
queue ahead is marked full. If messages cannot be sent, the scheduler
blocks the service procedure in B from further execution. B remains
blocked until the low water mark of the full queue, D, is reached.

5 . While B is blocked, any messages except high priority messages arriving
at B will accumulate on its message queue (recall that high priority mes
sages are not subject to flow control). Eventually, B may reach a full state
and the full condition will propagate back to the module in the Stream.

6 . When the service procedure processing on D causes the message block
total to fall below the low water mark, the full indicator is turned off.
Then, STREAMS automatically schedules the nearest preceding blocked
queue (B in this case), getting things moving again. This automatic
scheduling is known as back-enabling a queue.

Modules and drivers need to observe the message priority. High priority mes
sages, determined by the type of the first block in the message,

(mp->b_datap->db_type >= QPCTL) '

are not subject to flow control. They are processed immediately and forwarded,
as appropriate.

For ordinary messages, flow control must be tested before any processing is per
formed. The canput() utility determines if the forward path from the queue is
blocked by flow control.

Messages 5-29

Message Queues and Message Priority

This is the general flow control processing of ordinary messages:

1 . Retrieve the message at the head of the queue with getq().

2. Determine if the message type is high priority and not to be processed
here.

3 . If so, pass the message to the put procedure of the following queue with
putnext().

4 . Use canput() to determine if messages can be sent onward.

5 . If messages should not be forwarded, put the message back on the queue
with putbq() and return from the procedure.

6. Otherwise, process the message.

The canonical representation of this processing within a service procedure is as
follows:

while (getq ! = NULL)
if (high priority message I I canput)

process message

else
put next

putbq
return

Expedited data have their own flow control with the same general processing as
that of ordinary messages. bcanput() is used to provide modules and drivers
with a way to test flow control in the given priority band. It returns 1 if a mes
sage of the given priority can be placed on the queue. It returns 0 if the priority
band is flow controlled. If the band does not yet exist on the queue in question,
the routine returns 1 .

If the band is flow controlled, the higher bands are not affected. However, the
same is not true for lower bands. The lower bands are also stopped from send
ing messages. If this didn't take place, the possibility would exist where lower
priority messages would be passed along ahead of the flow controlled higher
priority ones.

5-30 Programmer's Guide: STREAMS

Message Queues and Message Priority

The call bcanput (q, 0) ; is equivalent to the call canput (q) ; . . ' A service procedur
.
e must process all messages on its queue unless flow

control prevents this .

A service procedure continues processing messages form its queue until getqO
returns NULL. When an ordinary message is enqueued by putq(), putq() will
cause the service procedure to be scheduled only if the queue was previously
empty, and a previous getq() call returns NULL (that is, the QW ANTR flag is
set). If there are messages on the queue, putq() presumes the service procedure
is blocked by flow control and the procedure will be automatically rescheduled
by STREAMS when the block is removed. If the service procedure cannot com
plete processing as a result of conditions other than flow control (e.g., no
buffers), it must ensure it will return later [e.g., by use of bufcall() utility rou
tine] or it must discard all messages on the queue. If this is not done,
STREAMS will never schedule the service procedure to be run unless the
queue's put procedure enqueues a priority message with putq().

putbq() replaces messages at the beginning of the appropriate section of the
message queue in accordance with their priority. This might not be the same
position at which the message was retrieved by the preceding getq(). A subse
quent getq() might return a different message.

putq() only looks at the priority band in the first message. If a high priority
message is passed to putq() with a non-zero b _band value, b _band is reset to 0
before placing the message on the queue. If the message is passed to putq()
with a b _band value that is greater than the number of qband structures associ
ated with the queue, putq() tries to allocate a new qband structure for each
band up to and including the band of the message.

The above also applies to putbq() and insq(). If an attempt is made to insert a
message out of order in a queue via insq(), the message is not inserted and the
routine fails.

Messages 5-31

Message Queues and Message Priority

putq() will not schedule a queue if noenable(q) had been previously called for
this queue. noenable(} instructs putq() to enqueue the message when called by
this queue, but not to schedule the service procedure. noenable() does not
prevent the queue from being scheduled by a flow control back-enable. The
inverse of noenable() is enableok(q).

Driver upstream flow control is explained next as an example. Although device
drivers typically discard input when unable to send it to a user process,
S1REAMS allows driver read-side flow control, possibly for handling temporary
upstream blockages. This is done through a driver read service procedure
which is disabled during the driver open with noenable(). If the driver input
interrupt routine determines messages can be sent upstream (from canput), it
sends the message with putnext(). Otherwise, it calls putq() to queue the mes
sage. The message waits on the message queue (possibly with queue length
checked when new messages are enqueued by the interrupt routine) until the
upstream queue becomes unblocked. When the blockage abates, STREAMS
back-enables the driver read service procedure. The service procedure sends
the messages upstream using getq(} and canput(}, as described previously.
This is similar to looprsrv() (see "Loop-Around Driver'' in Chapter 9) where the
service procedure is present only for flow control.

qenable(), another flow control utility, allows a module or driver to cause one
of its queues, or another module's queues, to be scheduled. qenable() might
also be used when a module or driver wants to delay message processing for
some reason. An example of this is a buffer module that gathers messages in its
message queue and forwards them as a single, larger message. This module
uses noenable() to inhibit its service procedure and queues messages with its
put procedure until a certain byte count or "in queue" time has been reached.
When either of these conditions is met, the module calls qenable() to cause its
service procedure to run.

Another example is a communication line discipline module that implements
end-to-end (i.e., to a remote system) flow control. Outbound data are held on
the write-side message queue until the read-side receives a transmit window
from the remote end of the network.

5-32 Programmer's Gulde: STREAMS

' . .
Message Queues and Message Priority

STREAMS routines are called at different priority levels. Interrupt routines
are cal led at the interrupt priority of the interrupting device. Service routines
are cal led with interrupts enabled (hence service routines for STREAMS
drivers can be interrupted by their own interrupt routines). Put routines are
generally cal led at str priority.

Messages 5-33

Service Interfaces

S1REAMS provides the means to implement a service interface between any
two components in a Stream, and between a user process and the topmost
module in the Stream. A service interface is defined at the boundary between a
service user and a service provider (see Figure 5-7). A service interface is a set of
primitives and the rules that define a service and the allowable state transitions
that result as these primitives are passed between the user and the provider.
These rules are typically represented by a state machine. In S1REAMS, the ser
vice user and provider are implemented in a module, driver, or user process.
The primitives are carried bidirectionally between a service user and provider in
M_PROTO and M_PCPROTO messages.

PROTO messages (M_PROTO and M_PCPROTO) can be multi-block, with the
second through last blocks of type M_DATA. The first block in a PROTO mes
sage contains the control part of the primitive in a form agreed upon by the
user and provider. The block is not intended to carry protocol headers.
(Although its use is not recommended, upstream PROTO messages can have
multiple PROTO blocks at the start of the message. getmsg(2) will compact the
blocks into a single control part when sending to a user process.) The M_DATA
block(s) contains any data part associated with the primitive. The data part may
be processed in a module that receives it, or it may be sent to the next Stream
component, along with any data generated by the module. The contents of
PROTO messages and their allowable sequences are determined by the service
interface specification.

PROTO messages can be sent bidirectionally (upstream and downstream) on a
Stream and between a Stream and a user process. putmsg(2) and getmsg(2) sys
tem calls are analogous, respectively, to write(2) and read(2) except that the
former allow both data and control parts to be (separately) passed, and they
retain the message boundaries across the user-Stream interface. putmsg(2) and
getmsg(2) separately copy the control part (M_PROTO or M_PCPROTO block)
and data part (M_DATA blocks) between the Stream and user process.

An M_PCPROTO message is normally used to acknowledge primitives com
posed of other messages. M_PCPROTO insures that the acknowledgement
reaches the service user before any other message. If the service user is a user
process, the Stream head will only store a single M_PCPROTO message, and
discard subsequent M_PCPROTO messages until the first one is read with
getmsg(2).

5-34 Programmer's Gulde: STREAMS

Service Interfaces

A STREAMS message format has been defined to simplify the design of service
interfaces. System calls, getmsg(2) and putmsg(2) are available for sending mes
sages downstream and receiving messages that are available at the Stream head.

This section describes the system calls getmsg and putmsg in the context of a
service interface example. First, a brief overview of STREAMS service interfaces
is presented.

Service Interface Benefits

A principal advantage of the STREAMS mechanism is its modularity. From
user level, kernel-resident modules can be dynamically interconnected to imple
ment any reasonable processing sequence. This modularity reflects the layering
characteristics of contemporary network architectures.

One benefit of modularity is the ability to interchange modules of like functions.
For example, two distinct transport protocols, implemented as STREAMS
modules, may provide a common set of services. An application or higher layer
protocol that requires those services can use either module. This ability to sub
stitute modules enables user programs and higher level protocols to be indepen
dent of the underlying protocols and physical communication media.

Each STREAMS module provides a set of processing functions, or services, and
an interface to those services. The service interface of a module defines the
interaction between that module and any neighboring modules, and is a neces
sary component for providing module substitution. By creating a well-defined
service interface, applications and STREAMS modules can interact with any
module that supports that interface. Figure 5-6 demonstrates this.

Messages 5-35

Service Interfaces

Figure 5-6: Protocol Substitution

Application
A

- - - - - - - - - -

.

TCP
Transport

Protocol

Lower Layer
Protocol
Suite A

Application
A

- - - - - - - - - -

Service Interface
.

ISO
Transport

Protocol

Lower Layer
Protocol
Suite B

_ y�r Space

Kernel Space

By defining a service interface through which applications interact with a tran
sport protocol, it is possible to substitute a different protocol below that service
interface in a manner completely transparent to the application. In this exam
ple, the same application can run over the Transmission Control Protocol (TCP)
and the ISO transport protocol. Of course, the service interface must define a
set of services common to both protocols.

The three components of any service interface are the service user, the service
provider, and the service interface itself, as seen in the following figure.

5-36 Programmer's Gulde: STREAMS

Figure 5-7: Service Interface

Request
Primitive

�
s

.

Service Interfaces

Service
User

Service Interface
.

t
R esponse and
E vent Primitives

'/

Service
Provider

Typically, a user makes a request of a service provider using some well-defined
service primitive. Responses and event indications are also passed from the
provider to the user using service primitives.

Each service interface primitive is a distinct STREAMS message that has two
parts; a control part and a data part. The control part contains information that
identifies the primitive and includes all necessary parameters. The data part
contains user data associated with that primitive.

An example of a service interface primitive is a transport protocol connect
request. This primitive requests the transport protocol service provider to estab
lish a connection with another transport user. The parameters associated with
this primitive may include a destination protocol address and specific protocol
options to be associated with that connection. Some transport protocols also
allow a user to send data with the connect request. A STREAMS message
would be used to define this primitive. The control part would identify the
primitive as a connect request and would include the protocol address and
options. The data part would contain the associated user data.

Messages 5-37

Service Interfaces

Service Interface Library Example

The service interface library example presented here includes four functions that
enable a user to do the following:

• establish a Stream to the service provider and bind a protocol address to
the Stream,

• send data to a remote user,

• receive data from a remote user, and

• close the Stream connected to the provider

First, the structure and constant definitions required by the library are shown.
These typically will reside in a header file associated with the service interface.

5-38 Programmer's Gulde: STREAMS

Service Interfaces

Five primitives have been defined. The first two represent requests from the
service user to the service provider. These are:

BIND_ REQ This request asks the provider to bind a specified proto
col address. It requires an acknowledgement from the
provider to verify that the contents of the request were
syntactically correct.

UNITDATA_REQ

Messages

This request asks the provider to send data to the
specified destination address. It does not require an
acknowledgement from the provider.

5.39

Service Interfaces

The three other primitives represent acknowledgements of requests, or indica
tions of incoming events, and are passed from the service provider to the service
user. These are:

OK ACK

ERROR ACK

This primitive informs the user that a previous bind
request was received successfully by the service pro
vider.

This primitive informs the user that a non-fatal error
was found in the previous bind request. It indicates
that no action was taken with the primitive that caused
the error.

UNITDATA IND This primitive indicates that data destined for the user
have arrived.

The defined structures describe the contents of the control part of each service
interface message passed between the service user and service provider. The
first field of each control part defines the type of primitive being passed.

Accessing the Service Provider

The first routine presented, inter _open, opens the protocol driver device file
specified by path and binds the protocol address contained in addr so that it may
receive data. On success, the routine returns the file descriptor associated with
the open Stream; on failure, it returns -1 and sets errno to indicate the appropri
ate UNIX system error value.

5-40 Programmer's Gulde: STREAMS

Service Interfaces

After opening the protocol driver, inter_ open packages a bind request message to
send downstream. putmsg is called to send the request to the service provider.
The bind request message contains a control part that holds a bind _req structure,
but it has no data part. ctlbuf is a structure of type strbuf, and it is initialized
with the primitive type and address. Notice that the maxlen field of ctlbuf is not
set before calling putmsg. That is because putmsg ignores this field. The
dataptr argument to putmsg is set to NULL to indicate that the message contains
no data part. Also, the ffa.gs argument is 0, which specifies that the message is
not a high priority message.

After inter _open sends the bind request, it must wait for an acknowledgement
from the service provider, as follows:

Messages 5-41

Service Interfaces

getmsg is called to retrieve the acknowledgement of the bind request. The ack
nowledgement message consists of a control part that contains either an ok_ack
or error _ack structure, and no data part.

5-42 Programmer's Gulde: STREAMS

Service Interfaces

The acknowledgement primitives are defined as priority messages. Messages
are queued in a first-in-first-out manner within their priority at the Stream head;
high priority messages are placed at the front of the Stream head queue
followed by priority band messages and ordinary messages. The STREAMS
mechanism allows only one high priority message per Stream at the Stream
head at one time; any further high priority messa$es are queued until the
message at the Stream head is processed. (There can be only one high priority
message present on the Stream head read queue at any time.) High priority
messages are particularly suitable for acknowledging service requests when the
acknowledgement should be placed ahead of any other messages at the Stream
head.

Before calling getmsg, this routine must initialize the strbuf structure for the
control part. buf should point to a buffer large enough to hold the expected
control part, and maxlen must be set to indicate the maximum number of bytes
this buffer can hold.

Because neither acknowledgement primitive contains a data part, the dataptr
argument to getmsg is set to NULL. The flagsp argument points to an integer
containing the value RS_ HIPRI. This flag indicates that getmsg should wait for
a STREAMS high priority message before returning. It is set because we want
to catch the acknowledgement primitives that are priority messages. Otherwise
if the flag is zero the first message is taken. With RS_ HIPRI set, even if a nor
mal message is available, getmsg will block until a high priority message
arrives.

On return from getmsg, the len field is checked to ensure that the control part of
the retrieved message is an appropriate size. The example then checks the
primitive type and takes appropriate actions. An OK _ACK indicates a success
ful bind operation, and inter_ open returns the file descriptor of the open Stream.
An ERROR_ACK indicates a bind failure, and errno is set to identify the prob
lem with the request.

Closing the Service Provider

The next routine in the service interface library example is inter _close, which
closes the Stream to the service provider.

Messages 5-43

Service Interfaces

The routine simply closes the given file descriptor. This will cause the protocol
driver to free any resources associated with that Stream. For example, the
driver may unbind the protocol address that had previously been bound to that
Stream, thereby freeing that address for use by some other service user.

Sending Data to Service Provider

The third routine, inter _snd, passes data to the service provider for transmission
to the user at the address specified in addr. The data to be transmitted are con
tained in the buffer pointed to by buf and contains len bytes. On successful
completion, this routine returns the number of bytes of data passed to the
service provider; on failure, it returns -1 and sets errno to an appropriate UNIX
system error value.

5-44 Programmer's Gulde: STREAMS

Service Interfaces

In this example, the data request primitive is packaged with both a control part
and a data part. The control part contains a unitdata _req structure that identifies
the primitive type and the destination address of the data. The data to be
transmitted are placed in the data part of the request message.

Unlike the bind request, the data request primitive requires no acknowledge
ment from the service provider. In the example, this choice was made to
minimize the overhead during data transfer. If the putmsg call succeeds, this
routine assumes all is well and returns the number of bytes passed to the
service provider.

Receiving Data

The final routine in this example, inter _rev, retrieves the next available data. buf
points to a buffer where the data should be stored, len indicates the size of that
buffer, and addr points to a long integer where the source address of the data
will be placed. On successful completion, inter _rev returns the number of bytes
in the retrieved data; on failure, it returns -1 and sets the appropriate UNIX
system error value.

Messages 5-45

Service Interfaces

getmsg is called to retrieve the data indication primitive, where that primitive
contains both a control and data part. The control part consists of a unitdata _ind
structure that identifies the primitive type and the source address of the data
sender. The data part contains the data itself.

In ctlbuf, buf must point to a buffer where the control information will be stored,
and maxlen must be set to indicate the maximum size of that buffer. Similar ini
tialization is done for databuf.

The integer pointed at by flagsp in the getmsg call is set to zero, indicating that
the next message should be retrieved from the Stream head, regardless of its
priority. Data will arrive in normal priority messages. If no message currently
exists at the Stream head, getmsg will block until a message arrives.

5-46 Programmer's Gulde: STREAMS

Service Interfaces

The user's control and data buffers should be large enough to hold any incom
ing data. If both buffers are large enough, getmsg will process the data indica
tion and return 0, indicating that a full message was retrieved successfully.
However, if either buffer is not large enough, getmsg will only retrieve the part
of the message that fits into each user buffer. The remainder of the message is
saved for subsequent retrieval (if in message non-discard mode), and a positive,
non-zero value is returned to the user. A return value of MORECTL indicates
that more control information is waiting for retrieval. A return value of
MOREDATA indicates that more data are waiting for retrieval. A return value
of (MORECTL I MOREDATA) indicates that data from both parts of the
message remain. In the example, if the user buffers are not large enough (that
is, getmsg returns a positive, non-zero value), the function will set errno to EIO
and fail.

The type of the primitive returned by getmsg is checked to make sure it is a
data indication (UNITDATA_IND in the example). The source address is then
set and the number of bytes of data is returned.

The example presented is a simplified service interface. The state transition
rules for such an interface were not presented for the sake of brevity. The
intent was to show typical uses of the putmsg and getmsg system calls. See
putmsg(2) and getmsg(2) for further details. For simplicity, this example did
not also consider expedited data.

Module Service Interface Example

The following example is part of a module which illustrates the concept of a ser
vice interface. The module implements a simple service interface and mirrors
the service interface library example given earlier. The following rules pertain
to service interfaces:

• Modules and drivers that support a service interface must act upon all
PROTO messages and not pass them through.

• Modules may be inserted between a service user and a service provider to
manipulate the data part as it passes between them. However, these
modules may not alter the contents of the control part (PROTO block, first
message block) nor alter the boundaries of the control or data parts. That
is, the message blocks comprising the data part may be changed, but the
message may not be split into separate messages nor combined with other
messages.

Messages 5-47

Service Interfaces

In addition, modules and drivers must observe the rule that high priority mes
sages are not subject to flow control and forward them accordingly.

Dec la rations
The service interface primitives are defined in the declarations:

5-48 Programmer's Gulde: STREAMS

Service Interfaces

Messages 5-49

Service Interfaces

In general, the M_PROTO or M_PCPROTO block is described by a data
structure containing the service interface information. In this example, union
primitives is that structure.

Two commands are recognized by the module:

BIND_REQ

UNITDATA_REQ

Give this Stream a protocol address (i.e., give it a
name on the network). After a BIND_ REQ is com
pleted, data from other senders will find their way
through the network to this particular Stream.

Send data to the specified address.

Three messages are generated:

OK ACK A positive acknowledgement (ack) of BIND _REQ.

ERROR ACK

UNITDATA IND

A negative acknowledgement (nak) of BIND_ REQ.

Data from the network have been received (this code is
not shown).

The acknowledgement of a BIND_ REQ informs the user that the request was
syntactically correct (or incorrect if ERROR_ ACK). The receipt of a BIND _REQ
is acknowledged with an M _PCPROTO to insure that the acknowledgement
reaches the user before any other message. For example, a UNITDATA_IND
could come through before the bind has completed, and the user would get con
fused.

5-50 Programmer's Gulde: STREAMS

Service Interfaces

The driver uses a per-minor device data structure, dgproto, which contains the
following:

state current state of the service provider IDLE or BOUND

addr network address that has been bound to this Stream

It is assumed (though not shown) that the module open procedure sets the write
queue q_ytr to point at the appropriate private data structure.

Service Interface Procedure

The write put procedure is:

Messages 5-51

Service Interfaces

(continued on next page)

5-52 Programmer's Gulde: STREAMS

Service Interfaces

The write put procedure switches on the message type. The only types
accepted are M_FLUSH and M_PROTO. For M_FLUSH messages, the driver
will perform the canonical flush handling (not shown). For M_PROTO mes
sages, the driver assumes the message block contains a union primitive and
switches on the type field. Two types are understood: BIND_ REQ and
UNITDATA_REQ.

For a BIND REQ, the current state is checked; it must be IDLE. Next, the mes
sage size is checked. If it is the correct size, the passed-in address is verified for
legality by calling chkaddr. If everything checks, the incoming message is con
verted into an OK_ ACK and sent upstream. If there was any error, the incom
ing message is converted into an ERROR_ ACK and sent upstream.

For UNITDATA REQ, the state is also checked; it must be BOUND. As above,
the message size

-
and destination address are checked. If there is any error, the

message is simply discarded. If all is well, the message is put on the queue, and
the lower half of the driver is started.

If the write put procedure receives a message type that it does not understand,
either a bad b_datap->db_type or bad proto->type, the message is converted
into an M_ERROR message and sent upstream.

The generation of UNITDATA_IND messages (not shown in the example)
would normally occur in the device interrupt if this is a hardware driver or in
the lower read put procedure if this is a multiplexor. The algorithm is simple:
The data part of the message is prepended by an M_PROTO message block that
contains a unitdata _ind structure and sent upstream.

Messages 5-53

Message Al location and Freeing

The allocb() utility routine i s used to allocate a message and the space to hold
the data for the message. allocb() returns a pointer to a message block contain
ing a data buffer of at least the size requested, providing there is enough
memory available. It returns null on failure. Note that allocb() always returns a
message of type M_DATA. The type may then be changed if required. b_rptr
and b_wptr are set to db_base (see msgb and datab) which is the start of the
memory location for the data.

allocb() may return a buffer larger than the size requested. If allocb() indicates
buffers are not available [allocb() fails], the put/service procedure may not call
sleep() to wait for a buffer to become available. Instead, the bufcall() utility can
be used to defer processing in the module or the driver until a buffer becomes
available.

If message space allocation is done by the put procedure and allocb() fails, the
message is usually discarded. If the allocation fails in the service routine, the
message is returned to the queue. bufcall() is called to enable to the service
routine when a message buffer becomes available, and the service routine
returns.

The freeb() utility routine releases (de-allocates) the message block descriptor
and the corresponding data block, if the reference count (see datab structure) is
equal to 1 . If the reference counter exceeds 1, the data block is not released.

The freemsg() utility routine releases all message blocks in a message. It uses
freeb() to free all message blocks and corresponding data blocks.

In the following example, allocb() is used by the bappend subroutine that
appends a character to a message block:

5-54 Programmer's Guide: STREAMS

Message Al location and Freeing

bappend receives a pointer to a message block pointer and a character as argu
ments. If a message block is supplied (*bpp ! = NULL) , bappend checks if there
is room for more data in the block. If not, it fails. If there is no message block,
a block of at least MODBLKSZ is allocated through allocb().

If the allocb() fails, bappend returns success, silently discarding the character.
This may or may not be acceptable. For TTY-type devices, it is generally
accepted. If the original message block is not full or the allocb() is successful,
bappend stores the character in the block.

The next example, subroutine modwput processes all the message blocks in any
downstream data (type M_DATA) messages. freemsg() deallocates messages.

Messages 5-55

Message Allocation and Freeing

Data messages are scanned and filtered. modwput copies the original message
into a new block(s), modifying as it copies. nbp points to the current new mes
sage block. nmp points to the new message being formed as multiple M_DATA
message blocks. The outer for () loop goes through each message block of the

5-56 Programmer's Gulde: STREAMS

Message Al location and Freeing

original message. The inner while () loop goes through each byte. bappend is
used to add characters to the current or new block. If bappend fails, the current
new block is full. If nmp is NULL, nmp is pointed at the new block. If nmp is
not NULL, the new block is linked to the end of nmp by use of the linkb() util
ity.

At the end of the loops, the final new block is linked to nmp. The original mes
sage (all message blocks) is returned to the pool by freemsg(). If a new message
exists, it is sent downstream.

Recovering From No Buffers

The bufcall() utility can be used to recover from an allocb() failure. The call
syntax is as follows:

bufcall (si ze , pri , func , arg) ;
int size , pri , (* func) () ;
long arg;

bufcall() calls (*func)(arg) when a buffer of size bytes is available. When func is
called, it has no user context and must return without sleeping. Also, because
of interrupt processing, there is no guarantee that when func is called, a buffer
will actually be available (someone else may steal it).

On success, bufcall() returns a nonzero identifier that can be used as a parame
ter to unbufcall() to cancel the request later. On failure, 0 is returned and the
requested function will never be called.

y Care must be taken to avoid deadlock when hold ing resources while wait

T
ing for bukall() to call ('fun')("g) . bufrall() should be used sparingly.

Two examples are provided. The first example is a device receive interrupt
handler:

Messages 5-57

Message Allocation and Freeing

dev _ rintr is called when the device has posted a receive interrupt. The code
retrieves the data from the device (not shown). dev _rintr must then give the
device another buffer to fill by a call to dev_re_load, which calls allocb(). If
allocb() fails, dev _re _load uses bufcall() to call itself when STREAMS determines
a buffer is available.

5-58 Programmer's Guide: STREAMS

Message Al location and Freeing

' Since bufcall() may fai l, there is sti l l a chance that the device may hang. A
better strategy, in the event bufcall() fails, wou ld be to discard the current
����

r
��s�:ii:

r
����e���;�

g
�hat buffer to the device. Losing input data is

The second example is a write service procedure, mod_wsrv, which needs to
prepend each output message with a header. mod_wsrv illustrates a case for
potential deadlock:

However, if allocb() fails, mod wsrv wants to recover without loss of data and
calls bufcall(). In this case, the routine passed to bufcall() is qenable(). When a
buffer is available, the service procedure will be automatically re-enabled.
Before exiting, the current message is put back on the queue. This example
deals with bufcall() failure by resorting to the timeout() operating system utility
routine. timeout() will schedule the given function to be run with the given
argument in the given number of clock ticks (there are HZ ticks per second). In
this example, if bufcall() fails, the system will run qenable() after two seconds
have passed.

Messages 5-59

Extended STREAMS Buffers

Some hardware using the S1REAMS mechanism supports memory-mapped 1/0
that allows the sharing of buffers between users, kernel, and the 1/0 card.

If the hardware supports memory-mapped 1/0, data received from the network
are placed in the DARAM (dual access RAM) section of the 1/0 card. Since
DARAM is a shared memory between the kernel and the 1/0 card, data transfer
between the kernel and the 1/0 card is eliminated. Once in kernel space, the
data buffer can be manipulated as if it were a kernel resident buffer. Similarly,
data being sent downstream are placed in DARAM and then forwarded to the
network.

In a typical network arrangement, data are received from the network by the
1/0 card. The disk controller reads the block of data into the card's internal
buffer. It interrupts the host computer to denote that data have arrived. The
S1REAMS driver gives the controller the kernel address where the data block is
to go and the number of bytes to transfer. After the disk controller has read the
data into its buffer and verified the checksum, it copies the data into main
memory to the address specified by the the OMA (direct memory access)
memory address. Once in the kernel space, the data are packaged into message
blocks and processed on the usual manner.

When data are transmitted from user process to the network, data are copied
from the user space to the kernel space, and packaged as a message block and
sent to the downstream driver. The driver interrupts the 1/0 card signaling
that data are ready to be transmitted to the network. The controller copies the
data from the kernel space to the internal buffer on the 1/0 card, and from
there data are placed on the network.

The S1REAMS buffer allocation mechanism enables the allocation of message
and data blocks to point directly to a client-supplied (non-S1REAMS) buffer.
Message and data blocks allocated this way are indistinguishable (for the most
part) from the normal data blocks. The client-supplied buffers are processed as
if they were normal S1REAMS data buffers.

Drivers may not only attach non-S1REAMS data buffers but also free them.
This is accomplished as follows:

• Allocation - If the drivers are to use DARAM without wasting STREAMS
resources and without being dependent on upstream modules, a data and
message block can be allocated without an attached data buffer. The

5-60 Programmer's Gulde: STREAMS

Extended STREAMS Buffers

routine to use is called esballoc(). This returns a message block and data
block without an associated STREAMS buffer. Rather, the buffer used is
the one supplied by the caller.

• Freeing - Each driver using non-STREAMS resources in a STREAMS
environment must fully manage those resources, including freeing them.
However, to make this as transparent as possible, a driver-dependent rou
tine is executed in the event freeb() is called to free a message and data
block with an attached non-STREAMS buffer.

freeb() detects if a buffer is a client supplied, non-STREAMS buffer. If i t
is, freeb() finds the free_ rtn structure associated with that buffer. After
calling the driver-dependent routine (defined in free _rtn) to free the
buffer, the freeb() routine frees the message and data block.

The format of the free rtn structure is as follows:

The structure has two fields: a pointer to a function and a location for any argu
ment passed to the function. Instead of defining a specific number of argu
ments, free _arg is defined as a char *. This way, drivers can pass pointers to
structures in the event more than one argument is needed.

The STREAMS utility routine, esballoc(), provides a common interface for allo
cating and initializing data blocks. It makes the allocation as transparent to the
driver as possible and provides a way to modify the fields of the data block,
since modification should only be performed by STREAMS. The driver calls
this routine when it wants to attach its own data buffer to a newly allocated
message and data block. If the routine successfully completes the allocation and
assigns the buffer, it returns a pointer to the message block. The driver is
responsible for supplying the arguments to esballoc(), namely, a pointer to its
data buffer, the size of the buffer, the priority of the data block, and a pointer to
the free_ rtn structure. All arguments should be non-NULL. See Appendix C
for a detailed description of esballoc. Appendix G has examples of extended
STREAMS buffers implemented in different hardware.

Messages 5-61

\ �· :

6 Pol l ing and Signaling

Input/Output Poll ing
Synchronous I nput/Output
Asynchronous Input/Output
Signals

• Extended Signals

Stream as a Controll ing Terminal
Job Control
Allocation and Deal location
Hung-up Streams
Hangup Signals
Accessing the Control ling Terminal

Table of Contents

6-1
6-1
6-6
6-7
6-8

6-9
6-9
6-1 2
6-1 2
6-1 3
6-1 3

1 -. �

·.; · ·

Input/Output Pol l i n g

This chapter describes the synchronous polling mechanism and asynchronous
event notification within STREAMS. Also discussed is how a Stream can be a
controlling terminal.

User processes can efficiently monitor and control multiple Streams with two
system calls: poll(2) and the I_ SETSIG ioctl(2) command. These calls allow a
user process to detect events that occur at the Stream head on one or more
Streams, including receipt of data or messages on the read queue and cessation
of flow control.

To monitor Streams with poll(2), a user process issues that system call and
specifies the Streams to be monitored, the events to look for, and the amount of
time to wait for an event. The poll(2) system call will block the process until
the time expires or until an event occurs. If an event occurs, it will return the
type of event and the Stream on which the event occurred.

Instead of waiting for an event to occur, a user process may want to monitor
one or more Streams while processing other data. It can do so by issuing the
I_SETSIG ioctl(2) command, specifying one or more Streams and events [as with
poll(2)] . This ioctl does not block the process and force the user process to wait
for the event but returns immediately and issues a signal when an event occurs.
The process must request signal(2) to catch the resultant SIGPOLL signal.

If any selected event occurs on any of the selected Streams, STREAMS will
cause the SIGPOLL catching function to be executed in all associated requesting
processes. However, the process(es) will not know which event occurred, nor
on what Stream the event occurred. A process that issues the I_SETSIG can get
more detailed information by issuing a poll after it detects the event.

Synchronous Input/Output

The poll(2) system call provides a mechanism to identify those Streams over
which a user can send or receive data. For each Stream of interest users can
specify one or more events about which they should be notified. The types of
events that can be polled are POLLIN, POLLRDNORM, POLLRDBAND,
POLLPRI, POLLOUT, POLLWRNORM, POLLWRBAND, POLLMSG:

POL LIN

Pol ling and Signaling

A message other than an M _ PCPROTO is at the front
of the Stream head read queue. This event is main
tained for compatibility with the previous releases of
the UNIX System V.

6-1

Input/Output Polling

POLLRDNORM

POLLRDBAND

POLLPRI

POL LOUT

POLLWRNORM

POLLWRBAND

POLLMSG

A normal (non-priority) message is at the front of the
Stream head read queue.

A priority message (band > 0) is at the front of the
Stream head queue.

A high priority message (M_PCPROTO) is at the
front of the Stream head read queue.

The normal priority band of the queue is writable
(not flow controlled).

The same as POLLOUT.

A priority band greater than 0 of a queue down
stream exists and is writable.

An M_SIG or M_PCSIG message containing the SIG
POLL signal has reached the front of the Stream
head read queue.

Some of the events may not be applicable to all file types. For example, it is not
expected that the POLLPRI event will be generated when polling a regular file.
POLLIN, POLLRDNORM, POLLRDBAND, and POLLPRI are set even if the
message is of zero length.

The poll system call will examine each file descriptor for the requested events
and, on return, will indicate which events have occurred for each file descriptor.
If no event has occurred on any polled file descriptor, poll blocks until a
requested event or timeout occurs. poll(2) takes the following arguments:

• an array of file descriptors and events to be polled

• the number of file descriptors to be polled

• the number of milliseconds poll should wait for an event if no events are
pending (-1 specifies wait forever)

The following example shows the use of poll. Two separate minor devices of
the communications driver are opened, thereby establishing two separate
Streams to the driver. The pollfd entry is initialized for each device. Each
Stream is polled for incoming data. If data arrive on either Stream, data are
read and then written back to the other Stream.

6·2 Programmer's Gulde: STREAMS

Input/Output Pol ling

The variable pollfds is declared as an array of the pollfd structure that is defined
in <poll.h> and has the following format:

For each entry in the array, fd specifies the file descriptor to be polled and events
is a bitrnask that contains the bitwise inclusive OR of events to be polled on that
file descriptor. On return, the revents bitrnask will indicate which of the
requested events has occurred.

The example continues to process incoming data as follows:

Pol l ing and Slgnallng 6-3

Input/Output Polling

The user specifies the polled events by setting the events field of the pollfd
structure to POLLIN. This requested event directs poll to notify the user of any
incoming data on each Stream. The bulk of the example is an infinite loop,
where each iteration will poll both Streams for incoming data.

The second argument to the poll system call specifies the number of entries in
the pollfds array (2 in this example). The third argument is a timeout value indi
cating the number of milliseconds poll should wait for an event if none has
occurred. On a system where millisecond accuracy is not available, timeout is
rounded up to the nearest value available on that system. If the value of timeout
is 0, poll returns immediately. Here, the value of timeout is -1, specifying that
poll should block until a requested event occurs or until the call is interrupted.

6-4 Programmer's Guide: STREAMS

Input/Output Pol ling

If the poll call succeeds, the program looks at each entry in the pollfds array. If
revents is set to 0, no event has occurred on that file descriptor. If revents is set
to POLLIN, incoming data are available. In this case, all available data are read
from the polled minor device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must have
occurred on that Stream, because POLLIN was the only requested event. The
following are poll error events:

POLLERR A fatal error has occurred in some module or driver on the
Stream associated with the specified file descriptor. Further
system calls will fail.

POLLHUP

POLLNVAL

A hangup condition exists on the Stream associated with
the specified file descriptor. This event and POLLOUT are
mutually exclusive; a Stream can't be writable if a hangup
has occurred.

The specified file descriptor is not associated with an open
Stream.

These events may not be polled for by the user, but will be reported in revents
whenever they occur. As such, they are only valid in the revents bitmask.

The example attempts to process incoming data as quickly as possible. How
ever, when writing data to a Stream, the write call may block if the Stream is
exerting flow control. To prevent the process from blocking, the minor devices
of the communications driver were opened with the O _ NDELA Y (or
0 _ NONBLOCK, see note) flag set. The write will not be able to send all the
data if flow control is exerted and 0 NDELAY (0 NONBLOCK) is set. This
can occur if the communications dri;er is unable to keep up with the user's rate
of data transmission. If the Stream becomes full, the number of bytes the write
sends will be less than the requested count. For simplicity, the example ignores
the data if the Stream becomes full, and a warning is printed to stderr.

' For conformance with the IEEE operating system interface standard, POSIX,
it is recommended that new applications use the 0 NONBLOCK flag, whose
behavior is the same as that of 0 N DELAY un less otherwise noted.

Pol l ing and Signaling 6-5

Input/Output Poll ing

This program continues until an error occurs on a Stream, or until the process is
interrupted.

Asynchronous Input/Output

The poll system call described before enables a user to monitor multiple
Streams in a synchronous fashion. The poll(2) call normally blocks until an
event occurs on any of the polled file descriptors. In some applications, how
ever, it is desirable to process incoming data asynchronously. For example, an
application may wish to do some local processing and be interrupted when a
pending event occurs. Some time-critical applications cannot afford to block,
but must have immediate indication of success or failure.

The I_SE1SIG ioctl call [see stream.io(7)] is used to request that a SIGPOLL sig
nal be sent to a user process when a specific event occurs. Listed below are
events for the ioctl I_SE1SIG. These are similar to those described for po11(2).

6-6

S INPUT A message other than an M_PCPROTO is at the front of
the Stream head read queue. This event is maintained for
compatibility with the previous releases of the UNIX Sys
tem V.

S RDNORM

S RDBAND

S HIPRI

S OUTPUT

S WRNORM

S WRBAND

A normal (non-priority) message is at the front of the
Stream head read queue.

A priority message (band > 0) is at the front of the Stream
head read queue.

A high priority message (M _PCPROTO) is present at the
front of the Stream head read queue.

A write queue for normal data (priority band = 0) is no
longer full (not flow controlled). This notifies a user that
there is room on the queue for sending or writing normal
data downstream.

The same as S OUTPUT.

A priority band greater than 0 of a queue downstream
exists and is writable. This notifies a user that there is
room on the queue for sending or writing priority data
downstream.

Programmer's Gulde: STREAMS

---------------------- Input/Output Pol l ing

S MSG

S ERROR

S HANGUP

S BANDURG

An M_SIG or M_PCSIG message containing the SIGPOLL
flag has reached the front of Stream head read queue.

An M _ERROR message reaches the Stream head.

An M _HANGUP message reaches the Stream head.

When used in conjunction with S _ RDBAND, SIGURG is
generated instead SIGPOLL when a priority message
reaches the front of the Stream head read queue.

S_INPUT, S_RDNORM, S_RDBAND, and S_HIPRI are set even if the message is
of zero length. A user process may choose to handle only high priority mes
sages by setting the arg to S _ HIPRI.

Signals

STREAMS allows modules and drivers to cause a signal to be sent to user
process(es) through an M_SIG or M_PCSIG message. The first byte of the
message specifies the signal for the Stream head to generate. If the signal is not
SIGPOLL [see signal(2)], the signal is sent to the process group associated with
the Stream. If the signal is SIGPOLL, the signal is only sent to processes that
have registered for the signal by using the I_ SETSIG ioctl(2).

An M_SIG message can be used by modules or drivers that wish to insert an
explicit inband signal into a message Stream. For example, this message can be
sent to the user process immediately before a particular service interface
message to gain the immediate attention of the user process. When the M _SIG
message reaches the head of the Stream head read queue, a signal is generated
and the M_SIG message is removed. This leaves the service interface message
as the next message to be processed by the user. Use of the M_SIG message is
typically defined as part of the service interface of the driver or module.

Polling and Slgnallng 6-7

Input/Output Pol l ing

Extended Signals

To enable a process to obtain the band and event associated with SIGPOLL
more readily, STREAMS supports extended signals. For the given events, a
special code is defined in <siginfo.h> that describes the reason SIGPOLL was
generated. The following table describes the data available in the siginfo _ t
structure passed to the signal handler.

event si_signo si code si band si errno

S INPUT SIGPOLL POLL IN band readable unused
S OUTPUT SIGPOLL POLL OUT band writable unused
S MSG SI GPO LL POLL MSG band signaled unused
S ERROR SI GPO LL POLL ERR unused Stream error
S HANGUP SIGPOLL POLL HUP unused unused
S HIPRI SIGPOLL POLL PRI unused unused

6-8 Programmer's Guide: STREAMS

Stream as a Contro l l ing Term inal

Job Contro l

An overview of Job Control is provided here for completeness and because it
interacts with the S1REAMS-based terminal subsystem. More information on
Job Control may be obtained from the following manual pages: exit(2},
getpgid(2), getpgrp(2), getsid(2), ki11(2), setpgid(2), setpgrp(2), setsid(2),
sigaction(2), signal(2), sigsend(2), termios(2), waitid(2), waitpid(3C), signal(S),
and termio(7).

Job Control is a feature supported by the BSD UNIX operating system. It is also
an optional part of the IEEE P1003.1 POSIX standard. Job Control breaks a
login session into smaller units called jobs. Each job consists of one or more
related and cooperating processes. One job, the foreground job, is given complete
access to the controlling terminal. The other jobs, background jobs, are denied
read access to the controlling terminal and given conditional write and ioctl
access to it. The user may stop an executing job and resume the stopped job
either in the foreground or in the background.

Under Job Control, background jobs do not receive events generated by the ter
minal and are not informed with a hangup indication when the controlling pro
cess exits. Background jobs that linger after the login session has been dissolved
are prevented from further access to the controlling terminal, and do not inter
fere with the creation of new login sessions.

The following defines terms associated with Job Control:

• Background Process group - A process group that is a member of a ses
sion that established a connection with a controlling terminal and is not
the foreground process group.

• Controlling Process - A session leader that established a connection to a
controlling terminal.

• Controlling Terminal - A terminal that is associated with a session. Each
session may have at most one controlling terminal associated with it and a
controlling terminal may be associated with at most one session. Certain
input sequences from the controlling terminal cause signals to be sent to
the process groups in the session associated with the controlling terminal.

• Foreground Process Group - Each session that establishes a connection
with a controlling terminal distinguishes one process group of the session

Poll ing and Signal ing 6-9

Stream as a Control l ing Terminal

as a foreground process group. The foreground process group has certain
privileges that are denied to background process groups when accessing
its controlling terminal.

• Orphaned Process Group - A process group in which the parent of every
member in the group is either a member of the group, or is not a member
of the process group's session.

• Process Group - Each process in the system is a member of a process
group that is identified by a process group ID. Any process that is not a
process group leader may create a new process group and become its
leader. Any process that is not a process group leader may join an exist
ing process group that shares the same session as the process. A newly
created process joins the process group of its creator.

• Process Group Leader - A process whose process ID is the same as its
process group ID.

• Process Group Lifetime - A time period that begins when a process
group is created by its process group leader and ends when the last pro
cess that is a member in the group leaves the group.

• Process ID - A positive integer that uniquely identifies each process in the
system. A process ID may not be reused by the system until the process
lifetime, process group lifetime, and session lifetime ends for any process
ID, process group ID, and session ID sharing that value.

• Process Lifetime - A time period that begins when the process is forked
and ends after the process exits, when its termination has been acknow
ledged by its parent process.

• Session - Each process group is a member of a session that is identified
by a session ID.

• Session ID - A positive integer that uniquely identifies each session in the
system. It is the same as the process ID of its session leader.

• Session Leader - A process whose session ID is the same as its process
and process group ID.

• Session Lifetime - A time period that begins when the session is created
by its session leader and ends when the lifetime of the last process group
that is a member of the session ends.

6-1 0 Programmer's Gulde: STREAMS

Stream as a Controlling Terminal

The following signals manage Job Control: [see also signal(S)]

SIGCONT Sent to a stopped process to continue it.

SIGSTOP Sent to a process to stop it. This signal cannot be
caught or ignored.

SIGTSTP

SIGTTIN

SIGTTOU

Sent to a process to stop it. It is typically used when
a user requests to stop the foreground process.

Sent to a background process to stop it when it
attempts to read from the controlling terminal.

Sent to a background process to stop it when one
attempts to write to or modify the controlling termi
nal.

A session may be allocated a controlling terminal. For every allocated control
ling terminal, Job Control elevates one process group in the controlling process's
session to the status of foreground process group. The remaining process
groups in the controlling process's session are background process groups. A
controlling terminal gives a user the ability to control execution of jobs within
the session. Controlling terminals play a central role in Job Control. A user
may cause the foreground job to stop by typing a predefined key on the control
ling terminal. A user may inhibit access to the controlling terminal by back
ground jobs. Background jobs that attempt to access a terminal that has been so
restricted will be sent a signal that typically will cause the job to stop. (See
"Accessing the Controlling Terminal" later in this chapter.)

Job Control requires support from a line discipline module on the controlling
terminal's Stream. The TCSETA, TCSETAW, and TCSETAF commands of ter
mio(7) allow a process to set the following line discipline values relevant to Job
Control:

SUSP

Pol ling and Signaling

A user defined character that, when typed, causes the
line discipline module to request that the Stream
head sends a SIGTSTP signal to the foreground pro
cess with an M_PCSIG message, which by default
stops the members of that group. If the value of
SUSP is zero, the SIGTSTP signal is not sent, and the
SUSP character is disabled.

6-1 1

Stream as a Controlling Terminal

TOSTOP If TOSTOP is set, background processes are inhibited
from writing to their controlling terminal.

A line discipline module must record the SUSP suspend character and notify the
Stream head when the user has typed it, and record the state of the TOSTOP bit
and notify the Stream head when the user has changed it.

Allocation and Deal location

A Stream is allocated as a controlling terminal for a session if:

• The Stream is acting as a terminal,

• The Stream is not already allocated as a controlling terminal, and

• The Stream is opened by a session leader that does not have a controlling
terminal.

Drivers and modules can inform the Stream head to act as a terminal Stream by
sending an M_SETOPTS message with the SO_ISTI'Y flag set upstream. This
state may be changed by sending an M_SETOPTS message with the SO_ISNTI'Y
flag set upstream.

Controlling terminals are allocated with the open(2) system call. A Stream head
must be informed that it is acting as a terminal by an M_SETOPTS message sent
upstream before or while the Stream is being opened by a potential controlling
process. If the Stream head is opened before receiving this message, the Stream
is not allocated as a controlling terminal.

Hung-up Streams

When a Stream head receives an M_HANGUP message, i t i s marked as hung
up. Streams that are marked as hung-up are allowed to be reopened by their
session leader if they are allocated as a controlling terminal, and by any process
if they are not allocated as a controlling terminal. This way, the hangup error
can be cleared without forcing all file descriptors to be closed first.

6-1 2 Programmer's Gulde: STREAMS

Stream as a Controll ing Terminal

If the reopen is successful, the hung-up condition is cleared.

Hangup Signals

When the SIGHUP signal is generated via an M _HANGUP message (instead of
an M_SIG or M_PCSIG message), the signal is sent to the controlling process
instead of the foreground process group, since the allocation and deallocation of
controlling terminals to a session is the responsibility of that process group.

Accessi ng the Control l ing Terminal

If a process attempts to access its controlling terminal after it has been deallo
cated, access will be denied. If the process is not holding or ignoring SIGHUP,
it is sent a SIGHUP signal. Otherwise, the access will fail with an EIO error.

Members of background process groups have limited access to their controlling
terminals:

• If the background process is ignoring or holding the SIGTIIN signal or is
a member of an orphaned process group, an attempt to read from the
controlling terminal will fail with an EIO error. Otherwise, the process is
sent a SIGTIIN signal, which by default stops the process.

• If the process is attempting to write to the terminal and if the terminal's
TOSTOP flag is clear, the process is allowed access.

The TOSTOP flag is set upon reception of an M _ SETOP1S message with
the SO_ TOSTOP flag set in the so _flags field. It is cleared upon reception
of an M _ SETOP1S message with the SO_ TONSTOP flag set.

• If the terminal's TOSTOP flag is set and a background process is attempt
ing to write to the terminal, the write will succeed if the process is ignor
ing or holding SIGTIOU. Otherwise, the process will stop except when it
is a member of an orphaned process group, in which case it is denied
access to the terminal and it is returned an EIO error.

Pol ling and Slgnallng 6-1 3

Stream as a Controlling Terminal

• If a background process is attempting to perform a destructive ioctl (an
ioctl that modifies terminal parameters), the ioctl call will succeed if the
process is ignoring or holding SIGTIOU. Otherwise, the process will stop
except when the process is a member of the orphaned process group. In
that case the access to the terminal is denied and an EIO error is returned.

6-1 4 Programmer's Gulde: STREAMS

7 Overview of Modules and Drivers

Module and Driver Environment 7-1
Module and Driver Declarations 7-2

• Nul l Module Example 7-6

Module and Driver ioctls 7-9

General ioctl Processing 7-1 o
l_STR ioct l Processing 7- 1 2

Transparent ioctl Processing 7-1 4

Transparent ioctl M essages 7-1 7

Transparent ioctl Examples 7-1 7
• M _ COPYIN Example 7-1 8
• M _ COPYOUT Example 7-22
• Bidirectional Transfer Example 7-24

I LIST ioctl 7-29

Fl ush Handl ing 7-3 1

Driver- Kernel Interface 7-37

Device Drive r Interface and Drive r- Kernel Interface 7-39

STR EAM S Interface 7-40

Design Guideli nes 7-42

Modules and Drivers 7-42

Table of Contents

• Rules for Open/Close Routines 7-43
• Rules for ioctls 7-43
• Rules for Put and Service Procedures 7-44

Table of Contents -----------------------

i i

Data Structures
• Dynamic Allocation of STREAMS Data Structures

Header Files
Accessible Symbols and Functions

7-47
7-47
7-48
7-49

Programmer's Gulde: STREAMS

Mod u le and Dr iver Envi ronment

Modules and drivers are processing elements in STREAMS. A Stream device
driver is similar to a conventional UNIX® system driver. It is opened like a
conventional driver and is responsible for the system interface to the device.

STREAMS modules and drivers are structurally similar. The call interfaces to
driver routines are identical to interfaces used for modules. Drivers and
modules must declare streamtab, qinit, and module_ info structures. Within the
STREAMS mechanism drivers are required elements, but modules are optional.
However, in the S1REAMS-based pipe mechanism and the pseudo-terminal sub
system only the Stream head is required.

There are three significant differences between modules and drivers. A driver
must be able to handle interrupts from a device, so the driver will typically
include an interrupt handler routine. Another difference is that a driver may
have multiple Streams connected to it. The third difference is the
initialization/ deinitialization process that happens via open/ close with a driver
and via the ioctls I PUSH/I POP with a module. (I PUSH/I POP results in
calls to open/ close�)

-
-

-

User context is not generally available to STREAMS module procedures and
drivers. The exception is during execution of the open and close routines.
Driver and module open and close routines have user context and may access
the u _area structure (defined in user.h, see "Accessible Symbols and Functions"
later in this chapter) although this is discouraged. These routines are allowed to
sleep, but must always return to the caller. That is, if they sleep, it must be at
priority numerically <= PZERO, or with PCATCH set in the sleep priority.
Priorities are higher as they decrease in numerical value. The process will never
return from the sleep call and the system call will be aborted if:

• A process is sleeping at priority > PZERO,

• PCATCH is not set, and

• A process is sent signal via kill(2).

Overview of Modules and Drivers 7-1

Modu le and Driver Environment

T STREAMS driver and module put procedures and service procedures
have no user context. They cannot access the u _area structure of a pro
cess and must not sleep.

The module and driver open/close interface has been modified for UN IX
System V Release 4.0. However, the system defaults to UNIX System V
Release 3.0 interface unless prefixflag is defined. This is discussed in the
section titled "Driver-Kernel Interface" later in this chapter. Examples and
descriptions in this chapter reflect Release 4.0 interface.

Module and Driver Declarations

A module and driver will contain, at a minimum, declarations of the following
form:

The contents of these declarations are constructed for the null module example
in this section. This module performs no processing. Its only purpose is to
show linkage of a module into the system. The descriptions in this section are
general to all STREAMS modules and drivers unless they specifically reference
the example.

7-2 Programmer's Gulde: STREAMS

Module and Driver Environment

The declarations shown are: the header set; the read and write queue (rminfo
and wminfo> module_info structures; the module open, read-put, write-put, and
close procedures; the read and write (rinit, and winit) qinit structures; and the
streamtab structure.

The header files, types.h and stream.h, are always required for modules and
drivers. The header file, param.h, contains definitions for NULL and other
values for STREAMS modules and drivers as shown in the section titled "Acces
sible Symbols and Functions" later in this chapter. ' When configuring a STREAMS module or driver (see Appendix E) the

streamtab structure must be externally accessible. The streamtab structure

����n�l�s��:e��f bk.
ef�h�h=�����i��·!�f��· th�s�;e�rxe ad��:�J�g

w��st be
"devflag."

The streamtab contains qinit values for the read and write queues. The qinit
structures in tum point to a module_ info and an optional module_ stat struc
ture. The two required structures are:

overview of Modules and Drivers 7-3

Module and Driver Environment

The qinit contains the queue procedures: put, service, open, and close. All
modules and drivers with the same streamtab (i.e., the same fmodsw or cdevsw
entry) point to the same upstream and downstream qinit structure(s). The
structure is meant to be software read-only, as any changes to it affect all instan
tiations of that module in all Streams. Pointers to the open and close pro
cedures must be contained in the read qinit structure. These fields are ignored
on the write-side. Our example has no service procedure on the read-side or
write-side.

The module_info contains identification and limit values. All queues associated
with a certain driver/module share the same module_info structures. The
module_info structures define the characteristics of that driver /module's
queues. As with the qinit, this structure is intended to be software read-only.

7-4 Programmer's Guide: STREAMS

Module and Driver Environment

However, the four limit values (q_minpsz, q_maxpsz, q_hiwat, q_lowat) are copied
to a queue structure where they are modifiable. In the example, the flow con
trol high and low water marks are zero since there is no service procedure and
messages are not queued in the module.

Three names are associated with a module: the character string in fmodsw,
obtained from the name of the master.d file used to configure the module; the
prefix for streamtab, used in configuring the module; and the module name
field in the module info structure. The module name must be the same as that
of master.d for autoconfiguration. Each module ID and module name should be
unique in the system. The module ID is currently used only in logging and
tracing. It is Ox08 in the example.

Minimum and maximum packet sizes are intended to limit the total number of
characters contained in M_DATA messages passed to this queue. These limits
are advisory except for the Stream head. For certain system calls that write to a
Stream, the Stream head will observe the packet sizes set in the write queue of
the module immediately below it. Otherwise, the use of packet size is
developer dependent. In the example, INFPSZ indicates unlimited size on the
read-side.

The module_stat is optional. Currently, there is no STREAMS support for sta
tistical information gathering.

Overview of Modu les and Drivers 7-5

Module and Driver Environment

Nul l Mod u le Example

The null module procedures are as follows:

The form and arguments of these procedures are the same in all modules and
all drivers. Modules and drivers can be used in multiple Streams and their pro
cedures must be reentrant.

7-6

If a module or driver uses the defin ition l_dev_t *devp instead of
dev t * devp, then that module or driver wil l only work on a system
where STYPES is not defined (that is, types have been expanded) . If a
driver or module is being used in environments where STYPES may or may
not be defined, then a driver shou ld use dev t *de'Vp, because dev t
changes depending on whether _ STYPES is defined.

-

Programmer's Gulde: STREAMS

Module and Driver Environment

modopen illustrates the open call arguments and return value. The arguments
are the read queue pointer (q), the pointer (devp) to the major/minor device
number, the file flags (flag, defined in sys/file.h), the Stream open flag (sflag),
and a pointer to a credentials structure (credp). The Stream open flag can take
on the following values:

MODOPEN

0

CLONEOPEN

normal module open

normal driver open

clone driver open

The return value from open is 0 for success and an error number for failure. If
a driver is called with the CLONEOPEN flag, the device number pointed to by
the devp should be set by the driver to an unused device number accessible to
that driver. This should be an entire device number (major and minor device
number). The open procedure for a module is called on the first I_PUSH and
on all subsequent open calls to the same Stream. During a push, a nonzero
return value causes the I PUSH to fail and the module to be removed from the
Stream. If an error is retUrned by a module during an open call, the open fails,
but the Stream remains intact.

The module open fails if not opened by the super-user (also referred to as a
privileged user) that in future releases will be a user with "driver/special" per
missions. Permission checks in module and driver open routines should be
done with the drv _priv() routine. For UNIX System V Release 4.0, there is no
need to check if u . u _ uid == o . This and the suser() routine are replaced
with:

e rror = drv_priv (credp) ;
i f (error) / * not super-user * /
return errno ;

In the null module example, modopen simply returns successfully. modput illus
trates the common interface to put procedures. The arguments are the read or
write queue pointer, as appropriate, and the message pointer. The put pro
cedure in the appropriate side of the queue is called when a message is passed
from upstream or downstream. The put procedure has no return value. In the
example, no message processing is performed. All messages are forwarded
using the putnext macro (see Appendix C). putnext calls the put procedure of
the next queue in the proper direction.

Overview of Modu les and Drivers 7-7

Module and Driver Environment

The close routine is only called on an I_ POP ioctl or on the last dose call of the
Stream. The arguments are the read queue pointer, the file flags as in modopen,
and a pointer to a credentials structure. The return value is 0 on success and
errno on failure.

7-8 Programmer's Gulde: STREAMS

Mod u le and Dr iver ioct ls

STREAMS is an addition to the UN IX system traditional character input/output
(I/0) mechanism. In this section, the phrases "character I/O mechanism" and
"1/0 mechanism" refer only to that part of the mechanism that pre-existed
STREAMS.

The character 1/0 mechanism handles all ioctl(2) system calls in a transparent
manner. That is, the kernel expects all ioctls to be handled by the device driver
associated with the character special file on which the call is sent. All ioctl calls
are sent to the driver, which is expected to perform all validation and process
ing other than file descriptor validity checking. The operation of any specific
ioctl is dependent on the device driver. If the driver requires data to be
transferred in from user space, it will use the kernel copyin() function. It may
also use copyout() to transfer out any data results back to user space.

With STREAMS, there are a number of differences from the character 1/0
mechanism that impact ioctl processing.

First, there are a set of generic STREAMS ioctl command values [see ioctl(2)]
recognized and processed by the Stream head. These are described in
streamio(7). The operation of the generic STREAMS ioctls are generally
independent of the presence of any specific module or driver on the Stream.

The second difference is the absence of user context in a module and driver
when the information associated with the ioctl is received. This prevents use of
copyin() or copyout() by the module. This also prevents the module and driver
from associating any kernel data with the currently running process. (It is likely
that by the time the module or driver receives the ioctl, the process generating
it may no longer be running.)

A third difference is that for the character I/O mechanism, all ioctls are handled
by the single driver associated with the file. In STREAMS, there can be multiple
modules on a Stream and each one can have its own set of ioctls. That is, the
ioctls that can be used on a Stream can change as modules are pushed and
popped.

STREAMS provides the capability for user processes to perform control func
tions on specific modules and drivers in a Stream with ioctl calls. Most
streamio(7) ioctl commands go no further than the Stream head. They are fully
processed there and no related messages are sent downstream. However, cer
tain commands and all unrecognized commands cause the Stream head to create
an M_IOCTL message which includes the ioctl arguments and send the message
downstream to be received and processed by a specific module or driver. The

Overview of Modules and Drivers 7-9

Module and Driver loctls

M _IOCTL message is the initial message type which carries ioctl information to
modules. Other message types are used to complete the ioctl processing in the
Stream. In general, each module must uniquely recognize and take action on
specific M_IOCTL messages.

SlREAMS ioctl handling is equivalent to the transparent processing of the char
acter 1/0 mechanism. STREAMS modules and drivers can process ioctls gen
erated by applications that are implemented for a non-STREAMS environment.

General ioctl Processing

SlREAMS blocks a user process which issues an ioctl and causes the Stream
head to generate an M_IOCTL message. The process remains blocked until
either:

• a module or a driver responds with an M _IOCACK (ack, positive
acknowledgement) message or an M_IOCNAK (nak, negative acknowl
edgement) message, or

• no message is received and the request "times out," or

• the ioctl is interrupted by the user process, or

• an error condition occurs.

For the ioctl I_ STR the timeout period can be a user specified interval or a
default. For the other M_IOCTL ioctls, the default value (infinite) is used.

For an I_STR, the SlREAMS module or driver that generates a positive
acknowledgement message can also return data to the process in that message.
An alternate means to return data is provided with transparent ioctls. If the
Stream head does not receive a positive or negative acknowledgement message
in the specified time, the ioctl call fails.

A module that receives an unrecognized M_IOCTL message should pass it on
unchanged. A driver that receives an unrecognized M_IOCTL should produce a
negative acknowledgement.

The form of an M_IOCTL message is a single M_IOCTL message block followed
by (see Figure B-1 in Appendix B) zero or more M_DATA blocks. The M_IOCTL
message block contains an iocblk structure, defined in <sys/stream.h>:

7-1 0 Programmer's Gulde: STREAMS

Module and Driver ioctls

For an I_STR ioctl, ioc_cmd contains the command supplied by the user in the
strioctl structure defined in streamio(7).

If a module or driver determines an M_IOCTL message is in error for any
reason, it must produce the negative acknowledgement message. This is typi
cally done by setting the message type to M_IOCNAK and sending the message
upstream. No data or a return value can be sent to a user in this case. If
ioc _error is set to 0, the Stream head will cause the ioctl call to fail with
EINV AL. The driver has the option of setting ioc_error to an alternate error
number if desired.

overview of Modules and Drivers 7·1 1

Module and Driver loctls

' ioc error can be set to a nonzero value in both M IOCACK and M IOCNAK.
This wil l caus� that value to be returned as an error number to the process
that sent the ioctl. .

If a module wants to look at what ioctls of other modules are doing, the module
should not look for a specific M _IOCTL on the write-side but look for
M _IOCACK or M _IOCNAK on the read-side. For example, the module sees
TCSETA [see termio(7)] going down and wants to know what is being set. The
module should look at it and save away the answer but not use it. The read
side processing knows that the module is waiting for an answer for the ioctl.
When the read-side processing sees an "ack" or "nak" next time, it checks if it is
the same ioctl (here TCSET A) and if it is, the module may use the answer previ
ously saved.

The two STREAMS ioctl mechanisms, I_STR and transparent, are described
next. [Here, I_ STR means the streamio(7) I_ STR command and implies the
related STREAMS processing unless noted otherwise.] I_ STR has a restricted
format and restricted addressing for transferring ioctl-related data between user
and kernel space. It requires only a single pair of messages to complete ioctl
processing. The transparent mechanism is more general and has almost no
restrictions on ioctl data format and addressing. The transparent mechanism
generally requires that multiple pairs of messages be exchanged between the
Stream head and module to complete the processing.

I_ STR ioctl Processing

The I_STR ioctl provides a capability for user applications to perform module
and driver control functions on STREAMS files. I_STR allows an application to
specify the ioctl timeout. It requires that all user ioctl data (to be received by
the destination module) be placed in a single block which is pointed to from the
user strioctl structure. The module can also return data to this block.

If the module is looking at for example the TCSETA/TCGETA group of ioctl
calls as they pass up or down a Stream, it must never assume that because
TCSET A comes down that it actually has a data buffer attached to it. The user
may have formed TCSETA as an I_STR call and accidentally given a null data
buffer pointer. One must always check b _cont to see if it is NULL before using
it as an index to the data block that goes with M_IOCTL messages.

7-1 2 Programmer's Gulde: STREAMS

Module and Driver loctls

The TCGETA call, if formed as an I_STR call with a data buffer pointer set to a
value by the user, will always have a data buffer attached to b_cont from the
main message block. If one assumes that the data block is not there and allo
cates a new buffer and assigns b _cont to point at it, the original buffer will be
lost. Thus, before assuming that the ioctl message does not have a buffer
attached, one should check first.

The following example illustrates processing associated with an I_STR ioctl.
lpdoioctl is called to process trapped M _IOCI'L messages:

Overview of Modu les and Drivers 7-1 3

Module and Driver loctls

lpdoioctl illustrates driver M_IOCTL processing which also applies to modules.
However, at case default, a module would not "nak" an unrecognized command,
but would pass the message on. In this example, only one command is recog
nized, SET_ OPTIONS. ioc _count contains the number of user supplied data
bytes. For this example, it must equal the size of a short. The user data are
sent directly to the printer interface using lpsetopt. Next, the M_IOCfL message
is changed to type M_IOCACK and the ioc_count field is set to zero to indicate
that no data are to be returned to the user. Finally, the message is sent
upstream using qreply(). If ioc_count was left nonzero, the Stream head would
copy that many bytes from the 2nd - Nth message blocks into the user buffer.

Transparent ioctl Processing

The transparent STREAMS ioctl mechanism allows application programs to per
form module and driver control functions with ioctls other than I STR. It is
intended to transparently support applications developed prior to the introduc
tion of STREAMS. It alleviates the need to recode and recompile the user level
software to run over STREAMS files.

The mechanism extends the data transfer capability for STREAMS ioctl calls
beyond that provided in the I_STR form. Modules and drivers can transfer data
between their kernel space and user space in any ioctl which has a value of the
command argument not defined in streamio(7}. These ioctls are known as tran
sparent ioctls to differentiate them from the I_ STR form. Transparent process
ing support is necessary when existing user level applications perform ioctls on
a non-STREAMS character device and the device driver is converted to
STREAMS. The ioctl data can be in any format mutually understood by the
user application and module.

The transparent mechanism also supports STREAMS applications that want to
send ioctl data to a driver or module in a single call, where the data may not be
in a form readily embedded in a single user block. For example, the data may
be contained in nested structures, different user space buffers, etc.

This mechanism is needed because user context does not exist in modules and
drivers when ioctl processing occurs. This prevents them from using the kernel
copyin()/ copyout() functions. For example, consider the following ioctl call:

7-1 4 Programmer's Gulde: STREAMS

Module and Driver ioctls

To read (or write) the elements of ioctl _struct, a module would have to perform
a series of copyin() I copyout() calls using pointer information from a prior
copyin() to transfer additional data. A non-S1REAMS character driver could
directly execute these copy functions because user context exists during all
UNIX system calls to the driver. However, in S1REAMS, user context is only
available to modules and drivers in their open and close routines.

The transparent mechanism enables modules and drivers to request that the
Stream head perform a copyin() or copyout() on their behalf to transfer ioctl
data between their kernel space and various user space locations. The related
data are sent in message pairs exchanged between the Stream head and the
module. A pair of messages is required so that each transfer can be ack
nowledged. In addition to M_IOCTL, M_IOCACK, and M_IOCNAK messages,
the transparent mechanism also uses M _ COPYIN, M _ COPYOUT, and
M_IOCDATA messages.

The general processing by which a module or a driver reads data from user
space for the transparent case involves pairs of request/response messages, as
follows:

1 . The Stream head does not recognize the command argument of an ioctl
call and creates a transparent M_IOCTL message (the iocblk structure has
a TRANSPARENT indicator, see ''Transparent ioctl Messages") contain
ing the value of the arg argument in the call. It sends the M _IOCTL mes
sage downstream.

2 . A module receives the M_IOCTL message, recognizes the ioc_cmd, and
determines that it is TRANSPARENT.

Overview of Modules and Drivers 7-1 5

Module and Driver loctls

3 . If the module requires user data, it creates an M_COPYIN message to
request a copyin() of user data. The message will contain the address of
user data to copy in and how much data to transfer. It sends the message
upstream.

4 . The Stream head receives the M_COPYIN message and uses the contents
to copyin() the data from user space into an M_IOCDATA response mes
sage which it sends downstream. The message also contains an indicator
of whether the data transfer succeeded (the copyin() might fail, for
instance, because of an EFAULT [see intro(2)] condition).

5 . The module receives the M_IOCDATA message and processes its con
tents.
The module may use the message contents to generate another
M _ COPYIN. Steps 3 through 5 may be repeated until the module has
requested and received all the user data to be transferred.

6 . When the module completes its data transfer, it performs the ioctl pro
cessing and sends an M_IOCACK message upstream to notify the Stream
head that ioctl processing has successfully completed.

Writing data from a module to user space is similar except that the module uses
an M _ COPYOUT message to request the Stream head to write data into user
space. In addition to length and user address, the message includes the data to
be copied out. In this case, the M_IOCDATA response will not contain user
data, only an indication of success or failure.

The module may intermix M _ COPYIN and M _ COPYOUT messages in any
order. However, each message must be sent one at a time; the module must
receive the associated M_IOCDATA response before any subsequent
M_COPYIN/M_COPYOUT request or "ack/nak" message is sent upstream.
After the last M_COPYIN/M_COPYOUT message, the module must send an
M _IOCACK message (or M _IOCNAK in the event of a detected error condi
tion).

7·1 6 Programmer's Gulde: STREAMS

Module and Driver ioctls

M _IOCACK message. The data must have been sent with a preceding
M _ COPYOUT message. T For a transparent M IOCTL, user data can not be returned with an

Transparent ioctl Messages

The form of the M _IOCTL message generated by the Stream head for a tran
sparent ioctl is a single M_IOCTL message block followed by one M_DATA
block. The form of the iocblk structure in the M IOCTL block is the same as
described under "General ioctl Processing." However, ioc_cmd is set to the value
of the command argument in the ioctl system call and ioc_count is set to TRAN
SPARENT, defined in <sys/stream.h>. TRANSPARENT distinguishes the case
where an I_STR ioctl may specify a value of ioc_cmd equivalent to the command
argument of a transparent ioctl. The M_DATA block of the message contains
the value of the arg parameter in the call.

M_COPYIN, M_COPYOUT, and M_IOCDATA messages and their use are
described in more detail in Appendix B.

Transparent ioctl Examples

Following are three examples of transparent ioctl processing. The first illus
trates M COPYIN. The second illustrates M COPYOUT. The third is a more - -

complex example showing state transitions combining both M_COPYIN and
M COPYOUT.

Overview of Modules and Drivers 7.1 7

Module and Driver loctls

M _ COPYIN Example

In this example, the contents of a user buffer are to be transferred into the ker
nel as part of an ioctl call of the form

ioct l (fd, SET_ADDR, &bufadd)

where bufadd is a structure declared as

struct addres s {
int ad_len;
caddr t ad_addr ;

} ;

I * buffer length in bytes * /
I * buffe r addres s * /

This requires two pairs of messages (request/response) following receipt of the
M _IOCTL message. The first will copyin the structure and the second will
copyin the buffer. This example illustrates processing that supports only the
transparent form of ioctl. xxxwput is the write-side put procedure for module
or driver xxx:

7-1 8 Programmer's Gulde: STREAMS

Module and Driver loctls

xxxwput verifies that the SET_ADDR is TRANSPARENT to avoid confusion with
an I_STR ioctl which uses a value of ioc_cmd equivalent to the command argu
ment of a transparent ioctl. When sending an M _IOCNAK, freeing the linked
M_DATA block is not mandatory as the Stream head will free it. However, this
returns the block to the buffer pool more quickly.

Overview of Modu les and Drivers 7-1 9

Module and Driver loctls

In this and all following examples in this section, the message blocks are reused
to avoid the overhead of deallocating and allocating.

!he St�eam head wil l gu�rantee that the size of the message block contain
ing an 1ocblk structure wi l l be large enough also to hold the copyreq and
copyresp structures.

cqyrivate is set to contain state information for ioctl processing (tells us what
the subsequent M_IOCDATA response message contains). Keeping the state in
the message makes the message self-describing and simplifies the ioctl process
ing. M_IOCDATA processing is done in xxxioc. Two M_IOCDATA types are
processed, GETSTRUCT and GET ADDR:

7-20 Programmer's Gulde: STREAMS

Module and Driver loctls

x:xx _set_ addr is a routine (not shown in the example) that processes the user
address from the ioctl. Since the message block has been reused, the fields that
the Stream head will examine (denoted by "may have been overwritten") must
be cleared before sending an M_IOCNAK.

overview of Modules and Drivers 7-21

Module and Driver loctls

M _ COPYOUT Example

In this example, the user wants option values for this Stream device to be placed
into the user's options structure (see beginning of example code, below). This
can be accomplished by use of a transparent ioctl call of the form

ioct l (fd, GET_OPTIONS , &optadd)

or, alternately, by use of a streamio call

ioctl (fd, I_STR, &opt s_st rioct l) call

In the first case, optadd is declared struct options. In the I_STR case, opts_strioctl
is declared struct strioctl where opts _strioctl.ic _dp points to the user options struc
ture.

This example illustrates support of both the I_ STR and transparent forms of an
ioctl. The transparent form requires a single M _ COPYOUT message following
receipt of the M_IOCfL to copyout the contents of the structure. xxxwput is the
write-side put procedure for module or driver xxx:

7-22 Programmer's Gulde: STREAMS

Module and Driver loctls

Overview of Modules and Drivers 7-23

Modu le and Driver loctls

Bidirectional Transfer Example

This example illustrates bidirectional data transfer between the kernel and user
space during transparent ioctl processing. It also shows how more complex
state information can be used.

The user wants to send and receive data from user buffers as part of a tran
sparent ioctl call of the form

ioct l (fd, XXX_IOCTL , &addr_xxxdata)

The user addr _xxxdata structure defining the buffers is declared as struct xxxdata,
shown below. This requires three pairs of messages following receipt of the
M_IOCTL message: the first to copyin the structure; the second to copyin one
user buffer; and the last to copyout the second user buffer. xxrwput is the
write-side put procedure for module or driver xxx:

7-24 Programmer's Gulde: STREAMS

Module and Driver loctls

Overview of Modules and Drivers 7-25

Module and Driver loctls

xxxwput allocates a message block to contain the state structure and reuses the
M _IOCTL to create an M _ COPYIN message to read in the xxxdata structure.

M_IOCDATA processing is done in xxxioc:

7-26 Programmer's Gulde: STREAMS

Module and Driver loctls

Overview of Modules and Drivers 7-27

Module and Driver loctls

At case GETSTRUCT, the user xxxdata structure is copied into the module's state
structure (pointed at by cpyrivate in the message) and the M_IOCDATA mes
sage is reused to create a second M _ COPYIN message to read in the user data.
At case GETINDATA, the input user data are processed by the xxx_indata routine
(not supplied in the example) which frees the linked M_DATA block and
returns the output data message block. The M_IOCDATA message is reused to
create an M_COPYOUT message to write the user data. At case PUTOUTDATA,
the message block containing the state structure is freed and an acknowledge
ment is sent upstream.

7-28 Programmer's Gulde: STREAMS

Module and Driver loctls

Care must be taken at the "can't happen" default case since the message block
containing the state structure (cp _yrivate) is not returned to the pool because it
might not be valid. This might result in a lost block. The ASSERT will help
find errors in the module if a "can't happen" condition occurs.

I LIST ioctl

The ioctl I_LIST supports the strconf and strchg commands [see strchg(l)] that
are used to query or change the configuration of a Stream. Only the super-user
or an owner of a STREAMS device may alter the configuration of that Stream.

The strchg command does the following:

• Push one or more modules on the Stream.

• Pop the topmost module off the Stream.

• Pop all the modules off the Stream.

• Pop all modules up to but not including a specified module.

The strconf command does the following:

• Indicate if the specified module is present on the Stream.

• Print the topmost module of the Stream.

• Print a list of all modules and topmost driver on the Stream.

If the Stream contains a multiplexing driver, the strchg and strconf commands
will not recognize any modules below that driver.

The ioctl I_ LIST performs two functions. When the third argument of the ioctl
call is set to NULL, the return value of the call indicates the number of modules,
including the driver, present on the Stream. For example, if there are two
modules above the driver, 3 is returned. On failure, errno may be set to a value
specified in streamio(7). The second function of the I_ LIST ioctl is to copy the
module names found on the Stream to the user supplied buffer. The address of
the buffer in user space and the size of the buffer are passed to the ioctl through
a structure str list that is defined as:

Overview of Modu les and Drivers 7-29

Module and Driver loctls

where sl _ nmods is the number of modules in the sl _mod list array that the user
has allocated. Each element in the array must be at least FMNAMESZ+l bytes
long. FMNAMESZ is defined by <sys/conf.h>.

The user can find out how much space to allocate by first invoking the ioctl
I_LIST with arg set to NULL. The I_ LIST call with arg pointing to the str_list
structure returns the number of entries that have been filled into the sl modlist
array (the number includes the number of modules including the driver). If
there is not enough space in the sl _ modlist array (see note) or sl _ nmods is less
than 1, the I_ LIST call will fail and errno is set to EINV AL. If arg or the
sl_modlist array points outside the allocated address space, EFAULT is returned.

7-30

It is possible, but un likely, that another module was pushed on the Stream
after the user invoked the I LIST ioctl with the NULL argument and before
the l_LIST ioctl with the structure argument was invoked.

Programmer's Gulde: STREAMS

Flush Hand l i ng

All modules and drivers are expected to handle M_FLUSH messages. An
M _FLUSH message can originate at the Stream head or from a module or a
driver. The first byte of the M_FLUSH message is an option flag that can have
following values:

FLUSHR

FLUSHW

FLUSHRW

FLUSHBAND

Flush read queue.

Flush write queue.

Flush both, read and write, queues.

Flush a specified priority band only.

The following example shows line discipline module flush handling:

The Stream head turns around the M_FLUSH message if FLUSHW is set
(FLUSHR will be cleared). A driver turns around M FLUSH if FLUSHR is set
(should mask off FLUSHW).

-

The next example shows the line discipline module flushing due to break:

Overview of Modules and Drivers 7-31

Flush Handl ing

The next two figures further demonstrate flushing the entire Stream due to a
line break. Figure 7-1 shows the flushing of the write-side of a Stream, and Fig
ure 7-2 shows the flushing of the read-side of a Stream. In the figures dotted
boxes indicate flushed queues.

7-32 Programmer's Gulde: STREAMS

Flush Handling

Figure 7-1 : Flushing The Write-Side of A Stream

0 FLUSHW

STREAM
WR RD

HEAD

0 FLUSHW 0 FLUSHW

.

MODULE © WR RD

. � .-.r .- .- .- .-.��SHW 0 M BREAK

0 WR RD
DRIVER

.

G)
BREAK

The following takes place:

1 . A break is detected by a driver.

2 . The driver generates an M_BREAK message and sends it upstream.

3 . The module translates the M_BREAK into an M_FLUSH message with
FLUSHW set and sends it upstream.

4. The Stream head does not flush the write queue (no messages are ever
queued there).

Overview of Modules and Drivers 7-33

Flush Handllng

5. The Stream head turns the message around (sends it down the write-
side).

6. The module flushes its write queue.

7. The message is passed downstream.

8 . The driver flushes its write queue and frees the message.

This figure shows flushing read-side of a Stream.

Figure 7-2: Flush ing The Read-Side of A Stream

S1REAM
HEAD

FLUSHR

: · · · : ®
. . � © RD
. .
.

MODULE � ·0 ��- ·-
FLUSHRQ) �······· ·· · · ·· ······

DRIVER WR � ® RD

I.___ ___ ___,

G) FLUSHR

The events taking place are:

7-34 Programmer's Gulde: STREAMS

Flush Handling

1 . After generating the first M _FLUSH message, the module generates an
M _FLUSH with FLUSHR set and sends it downstream.

2 . The driver flushes its read queue.

3 . The driver turns the message around (sends it up the read-side).

4 . The module flushes its read queue.

5 . The message is passed upstream.

6 . The Stream head flushes the read queue and frees the message.

The flushband() routine (see Appendix C) provides the module and driver with
the capability to flush messages associated with a given priority band. A user
can flush a particular band of messages by issuing:

ioct l (fd, I_FLUSHBAND , bandp) ;

where bandp is a pointer to a structure bandinfo that has a format:

st ruct bandinfo {
unsigned char
int

} ;

bi_pri ;
bi_flag;

The bi_flag field may be one of FLUSHR, FLUSHW, or FLUSHRW.

The following example shows flushing according to the priority band:

Overview of Modules and Drivers 7-35

Flush Handl ing

Note that modules and drivers are not required to treat messages as flowing in
separate bands. Modules and drivers can view the queue having only two
bands of flow, normal and high priority. However, the latter alternative will
flush the entire queue whenever an M _FLUSH message is received.

One use of the field b _flag of the msgb structure is provided to give the Stream
head a way to stop M_FLUSH messages from being reflected forever when the
Stream is being used as a pipe. When the Stream head receives an M _FLUSH
message, it sets the MSGNOLOOP flag in the b _flag field before reflecting the
message down the write-side of the Stream. If the Stream head receives an
M_FLUSH message with this flag set, the message is freed rather than reflected.

7-36 Programmer's Gulde: STREAMS

Driver- Kernel I nterface

The Driver-Kernel Interface (OKI) is an interface between the UNIX system ker
nel and drivers. These drivers are block interface drivers, character interface
drivers, and drivers and modules supporting a STREAMS interface. Each driver
type supports an interface from the kernel to the driver. This kernel-to-driver
interface consists of a set of driver-defined functions that are called by the ker
nel. These functions are the entry points into the driver.

One benefit of defining the OKI is increased portability of driver source code
between various UNIX System V implementations. Another benefit is a gain in
modularity that results in extending the potential for changes in the kernel
without breaking driver code.

The interaction between a driver and the kernel can be described as occurring
along two paths. (See Figure 7-3).

One path includes those functions in the driver that are called by the kernel.
These are entry points into the driver. The other path consists of the functions
in the kernel that are called by the driver. These are kernel utility functions
used by the driver. Along both paths, information is exchanged between the
kernel and drivers in the form of data structures. The OKI identifies these
structures and specifies a set of contents for each. The OKI also defines the
common set of entry points expected to be supported in each driver type and
their calling and return syntaxes. For each driver type, the OKI lists a set of
kernel utility functions that can be called by that driver and also specifies their
calling and return syntaxes.

Overview of Modules and Drivers 7-37

Driver- Kernel Interface

Figure 7-3: Interfaces Affecting Drivers

hardware

driver entry points

hard ware access functions
device register

interrupts device

register

device information

kernel

driver

utility functions

hooks in driver

for boot/ autoconfig.

The set of STREAMS utilities available to drivers are listed in Appendix C. No
system-defined macros that manipulate global kernel data or introduce structure
size dependencies are permitted in these utilities. Therefore, some utilities that
have been implemented as macros in the prior UNIX system releases are imple
mented as ftmctions in UNIX System V Release 4.0. This does not preclude the
existence of both macro and fu.nction versions of these utilities. It is envisioned
that driver source code will include a header file (see "Header Files" later in
this chapter) that picks up function declarations while the core operating system
source includes a header file that defines the macros. With the DKI interface the

7-38 Programmer's Gulde: STREAMS

Driver- Kernel Interface

following STREAMS utilities are implemented as C programming language
functions: datamsg, OTHERQ, putnext, RD, splstr, and WR.

Replacing macros such as RD() with function equivalents in the driver source
code allows driver objects to be insulated from changes in the data structures
and their size, further increasing the useful lifetime of driver source code and
objects.

The OKI interface defines an interface suitable for drivers and there is no need
for drivers to access global kernel data structures directly. The kernel functions
drv _getparm and drv _setparm are provided for reading and writing informa
tion in these structures. This restriction has an important consequence. Since
drivers are not permitted to access global kernel data structures directly,
changes in the contents/ offsets of information within these structures will not
break objects. The drv _getparm and drv _ setparm functions are described in
more detail in the Device Driver Interface/Driver-Kernel Interface (DDI/DKI) Refer
ence Manual.

Device Driver Interface and Driver- Kernel Interface

The Device Driver Interface (DOI) is an AT&T interface that facilitates driver
portability across different UNIX system versions on the AT&T 3B2 hardware.
The Driver-Kernel Interface (OKI) is an interface that also facilitates driver
source code portability across implementations of UNIX System V Release 4.0
on all machines. OKI driver code, however, will have to be recompiled on the
machine on which it is to run.

The most important distinction between the DOI and the OKI lies in scope. The
DOI addresses complete interfaces (see note below) for block, character, and
STREAMS interface drivers and modules. The OKI defines only driver inter
faces with the kernel with the addition of the kernel interface for file system
type (FST) modules. The OKI interface does not specify the system initialization
driver interface [i.e., init() and start() driver routines] nor hardware related
interfaces such as getvec for the AT&T 3B2.

Overview of Modules and Drivers 7-39

Driver- Kernel Interface

The "complete interface" refers to hardware- and boot/configuration-related
driver interface in addition to the interface with the kernel.

STREAMS Interface

The entry points from the kernel into STREAMS drivers and modules are
through the qinit structures (see Appendix A) pointed to by the streamtab
structure, prefixinfo. STREAMS drivers may need to define additional entry
points to support the interface with boot/ autoconfiguration software and the
hardware (for example, an interrupt handler).

If the STREAMS module has prefix mod then the declaration is of the form:

where
modrput is the module's read queue put procedure,
modrsrv is the module's read queue service procedure,
modopen is the open routine for the module,
modclose is the close routine for the module,
modwput is the put procedure for the module's write queue, and
modwsrv is the service procedure for the module's write queue.

7-40 Programmer's Gulde: STREAMS

Driver- Kernel Interface

Each qinit structure can point to four entry points. (An additional function
pointer has been reserved for future use and must not be used by drivers or
modules.) These four function pointer fields in the qinit structure are: qi_putp,
qi_srup, qi_qopen, and qi_close.

The utility functions that can be called by STREAMS drivers and modules are
listed in Appendix C. They must follow the call and return syntaxes specified
in the appendix. Manual pages relating to the Driver-Kernel Interface and Dev
ice Driver Interface are provided in the Device Driver Interface/Driver-Kernel
Interface (DDI/DKI) Reference Manual.

Overview of Modules and Drivers 7-41

Design G u idel ines

This section summarizes guidelines common to the design of STREAMS
modules and drivers. Additional rules pertaining to modules and drivers can
be found in Chapter 8 for modules and Chapter 9 for drivers.

Modules and Drivers

1 . Modules and drivers cannot access information in the u_area of a process.
Modules and drivers are not associated with any process, and therefore
have no concept of process or user context, except during open and close
routines (see "Rules for Open/Oose Routines").

2. Every module and driver must process an M_FLUSH message according
to the value of the argument passed in the message.

3 . A module or a driver should not change the contents of a data block
whose reference count is greater than 1 [see dupmsg() in Appendix C]
because other modules/ drivers that have references to the block may not
want the data changed. To avoid problems, data should be copied to a
new block and then changed in the new one.

4 . Modules and drivers should manipulate queues and manage buffers only
with the routines provided for that purpose, (see Appendix C).

5. Modules and drivers should not require the data in an M_DATA message
to follow a particular format, such as a specific alignment.

6 . Care must be taken when modules are mixed and matched, because one
module may place different semantics on the priority bands than another
module. The specific use of each band by a module should be included
in the service interface specification.

7-42

When designing modules and drivers that make use of priority bands one
should keep in mind that priority bands merely provide a way to impose
an ordering of messages on a queue. The priority band is not used to
determine the service primitive. Instead, the service interface should rely
on the data contained in the message to determine the service primitive.

Programmer's Gulde: STREAMS

Design Guidel ines

Rules for Open/Close Routines

1 . open and close routines may sleep, but the sleep must return to the rou
tine in the event of a signal. That is, if they sleep, they must be at prior
ity <= PZERO, or with PCATCH set in the sleep priority.

2 . The open routine should return zero on success or an error number on
failure. If the open routine is called with the CLONEOPEN flag, the dev
ice number should be set by the driver to an unused device number
accessible to that driver. This should be an entire device number
(major/minor).

3 . open and close routines have user context and can access the u_area.

4 . Only the following fields can be accessed in the u_area {user.h): u_yrocp,
u _ttyp, u _ uid, u _gid, u _ ruid, and u _rgid. The fields u _ uid, u _gi,d, u _ ruid,
and u_rgid are for backward compatibility with previously designed dev
ice drivers. The actual user credentials are passed directly to the driver
and need not be accessed in the u_area. These fields may not support
valid uids or gids when the system is configured with large user ids. See
note.

5 . Only the following fields can be accessed in the process table (proc.h):
p_yid, p_ygrp. See note.

6 . If a module or a driver wants to allocate a controlling terminal, it should
send an M _ SETOPTS message to the Stream head with the SO _ISTTY flag
set. Otherwise signaling will not work on the Stream .

• The OKI interface provides the drv_getparm and drv_setparm functions to

T
'•ad/write these data and the drive,,module need not access them d i ,ectly.

Rules for ioctls

• Do not change the ioc_id, ioc_uid, ioc_gid, or ioc_cmd fields in an M_IOCTL
message.

• The above rule also applies to fields in an M_IOCDATA, M_COPYIN, and
M _ COPYOUT message. (Field names are different; see Appendix A)

Overview of Modu les and Drivers 7-43

Design Guidelines

• Always validate ioc _count to see whether the ioctl is the transparent or
I STR form.

Rules for Put and Service Procedures

To ensure proper data flow between modules and drivers, the following rules
should be observed in put and service procedures:

• Put and service procedure must not sleep.

• Return codes can be sent with STREAMS messages M_IOCACK,

M_IOCNAK, and M_ERROR.

• Protect data structures common to put and service procedures by using
splstr().

• Put and service procedures cannot access the information in the u_area of
a process.

• Processing M _DAT A messages by both put and service procedures could
lead to messages going out of sequence. The put procedure should check
if any messages were queued before processing the current message.

On the read-side, it is usually a good idea to have the put procedure check if
the service procedure is running because of the possibility of a race condition.
That is, if there are unprotected sections in the service procedure, the put pro
cedure can be called and run to completion while the service procedure is run
ning (the put procedure can interrupt the service procedure on the read-side).
For example, the service procedure is running and it removes the last message
from the queue, but before it puts the message upstream the put procedure is
called (e.g., from an interrupt routine) at an unprotected section in the service
procedure. The put procedure sees that the queue is empty and processes the
message. The put procedure then returns and the service procedure resumes;
but at this point data are out of order because the put procedure sent upstream
the message that was received after the data the service procedure was process
ing.

7-44 Programmer's Guide: STREAMS

Design Guidelines

Put Procedures

1 . Each queue must define a put procedure in its qinit structure for passing
messages between modules.

2 . A put procedure must use the putq() (see Appendix C) utility to enqueue
a message on its own queue. This is necessary to ensure that the various
fields of the queue structure are maintained consistently.

3 . When passing messages to a neighboring module, a module may not call
putq() directly, but must call its neighbor module's put procedure [see
putnext() in Appendix C] .

However, the q_qinfo structure that points to a module's put procedure
may point to putq() [i.e., putq() is used as the put procedure for that
module] . When a module calls a neighbor module's put procedure that is
defined in this manner, it will be calling putq() indirectly. If any module
uses putq() as its put procedure in this manner, the module must define a
service procedure. Otherwise, no messages will ever be processed by the
next module. Also, because putq() does not process M _FLUSH messages,
any module that uses putq() as its put procedure must define a service
procedure to process M _FLUSH messages.

4. The put procedure of a queue with no service procedure must call the
put procedure of the next queue using putnext(), if a message is to be
passed to that queue.

5 . Processing many function calls with the put procedure could lead to
interrupt stack overflow. In that case, switch to service procedure pro
cessing whenever appropriate to switch to a different stack.

Service Procedures

1 . If flow control is desired, a service procedure is required. The canput(}
or bcanput() routines should be used by service procedures before doing
putnext() to honor flow control.

2 . The service procedure must use getq() to remove a message from its mes
sage queue, so that the flow control mechanism is maintained.

3 . The service procedure should process all messages on its queue. The
only exception is if the Stream ahead is blocked [i.e., canput() fails] or
some other failure like buffer allocation failure. Adherence to this rule is
the only guarantee that STREAMS will enable (schedule for execution) the

overview of Modules and Drivers 7.45

Design Guidelines

service procedure when necessary, and that the flow control mechanism
will not fail.

If a service procedure exits for other reasons, it must take explicit steps to
assure it will be re-enabled.

4 . The service procedure should not put a high priority message back on the
queue, because of the possibility of getting into an infinite loop.

5 . The service procedure must follow the steps below for each message that
it processes. STREAMS flow control relies on strict adherence to these
steps.

Step 1:

Step 2:

Step 3:

Step 4:

7-46

Remove the next message from the queue using getq(). It
is possible that the service procedure could be called when
no messages exist on the queue, so the service procedure
should never assume that there is a message on its queue.
If there is no message, return.

If all of the following conditions are met:

• canput() or bcanput() fails and

• the message type is not a high priority type and

• the message is to be put on the next queue,

continue at Step 3. Otherwise, continue at Step 4.

The message must be replaced on the head of the queue
from which it was removed using putbq() (see Appendix
C). Following this, the service procedure is exited. The
service procedure should not be re-enabled at this point. It
will be automatically back-enabled by flow control.

If all of the conditions of Step 2 are not met, the message
should not be returned to the queue. It should be pro
cessed as necessary. Then, return to Step 1 .

Programmer's Gulde: STREAMS

Design Guidelines

Data Structures

Only the contents of q_ptr, q_minpsz, q_maxpsz, q_hiwat, and q_lowat in , the queue
structure may be altered. q_minpsz, q_maxpsz, q_hiwat, and q_luwat are set when
the module or driver is opened, but they may be modified subsequently.

Drivers and modules should not change any fields in the equeue structure. The
only field of the equeue structure they are allowed to reference is eq_bandp.
(Note that _STYPES must be defined to use the equeue structure.)

Drivers and modules are allowed to change the qb_hiwat and qb_lowat fields of
the qband structure. They may only read the qb_count, qb_Jirst, qb_last, and
qb _flag fields.

The routines strqget() and strqset() can be used to get and set the fields associ
ated with the queue. They insulate modules and drivers from changes in the
queue structure and also enforce the previous rules.

Dynamic Allocation of STREAMS Data Structures

Prior to UNIX System V Release 4.0, STREAMS data structures were statically
configured to support a fixed number of Streams, read and write queues, mes
sage and data blocks, link block data structures, and Stream event cells. The
only way to change this configuration was to reconfigure and reboot the system.
Resources were also wasted because data structures were allocated but not
necessarily needed.

With Release 4.0 the STREAMS mechanism has been enhanced to dynamically
allocate the following STREAMS data structures: stdata, queue, linkblk,
strevent, datab, and msgb. STREAMS allocates memory to cover these struc
tures as needed.

Dynamic data structure allocation has the advantage of the kernel being initially
smaller than a system with static configuration. The performance of the system
may also improve because of better memory utilization and added flexibility.
However, allocb(), bufcall(), and freeb(), the routines that manage these data
structures, may be slower at times because of extra overhead needed for
dynamic allocation.

overview of Modules and Drivers 7-47

Design Guidelines

Header Files

The following header files are generally required in modules and drivers:

types.h contains type definitions used in the STREAMS header files

stream.h

stropts.h

ddi.h

contains required structure and constant definitions

primarily for users, but contains definitions of the argu
ments to the M _FLUSH message type also required by
modules

contains definitions and declarations needed by drivers to
use functions for the UNIX System V Device Driver Inter
face or Driver-Kernel Interface. This header file should be
the last header file included in the driver source code (after
all #include statements).

One or more of the header files described next may also be included. No stan
dard UNIX system header files should be included except as described in the
following section. The intent is to prevent attempts to access data that cannot or
should not be accessed.

errno.h

sysmacros.h

param.h

signal.h

file.h

7-48

defines various system error conditions, and is needed if
errors are to be returned upstream to the user

contains miscellaneous system macro definitions

defines various system parameters, particularly the value of
the PCA TCH sleep flag

defines the system signal values, and should be used if sig
nals are to be processed or sent upstream

defines the file open flags, and is needed if O_NDELAY (or
O _ NONBLOCK) is interpreted

Programmer's Gulde: STREAMS

Design Guidelines

Accessible Symbols and Functions

The following lists the only symbols and functions that modules or drivers may
refer to (in addition to those defined by STREAMS; see Appendices A and C), if
hardware and system release independence is to be maintained. Use of symbols
not listed here is unsupported.

• user.h (from open/ close procedures only)

u_procp
u_ttyp

process structure pointer
tty group ID pointer

• proc.h (from open/ close procedures only)

p _pid process ID
p_pgrp process group ID

• functions accessible from open/close procedures only

sleep(chan, pri) sleep until wakeup
delay(ticks) delay for a specified time

• universally accessible functions

bcopy(from, to, nbytes) copy data quickly
bzero(buffer, nbytes) zero data quickly
max(a, b) return max of args
min(a, b) return min of args
rmalloc(mp, size) allocate memory space
rmfree(mp, size, i) de-allocate memory space
rminit(mp, mapsize) initialize map structure
vtop(vaddr, NULL) translate from virtual to physical address
cmn _ err(level, . . .) print message and optional panic
spin() set priority level
splstrO set processor level for Streams
timeout(func, arg, ticks) schedule event
untimeout(id) cancel event
wakeup(chan) wake up sleeper

• sysmacros.h

The first four functions are used to get the major/minor part of the expanded
device number.
getemajor(x)
getmajor(x)

Overview of Modules and Drivers

return external major part
return internal major part

7-49

Design Guidelines

geteminor(x)
getminor(x)
makedev(x, y)
makedevice(x, y)
cmpdev(x)
expdev(x)

• systm.h

lbolt
time

• param.h

PZERO
PCATCH
HZ
NULL

• types.h

return external minor part
return internal minor part
create a old device number
create a new device number
convert to old device format
convert to new device format

clock ticks since boot in HZ
seconds since epoch

zero sleep priority
catch signal sleep flag
clock ticks per second
0

Everything in types.h can be used.

7-50 Programmer's Gulde: STREAMS

8 Modules

Modules
Module Routines
Filter Modu le Example

Flow Control

Design Guidel ines

Table of Contents

8-1
8-1
8-5

8-1 1

8-1 4

i . . •

Mod u les

A STREAMS module is a pair of queues and a defined set of kernel-level rou
tines and data structures used to process data, status, and control information.
A Stream may have zero or more modules. User processes push (insert)
modules on a Stream using the I_ PUSH ioctl and pop (remove) them using the
I_ POP ioctl. Pushing and popping of modules happens in a LIFO (Last-In
First-Out) fashion. Modules manipulate messages as they flow through the
Stream.

Module Routines

STREAMS module routines (open, close, put, service) have already been
described in the previous chapters. This section shows some examples and
further describes attributes common to module put and service routines.

A module's put routine is called by the preceding module, driver, or Stream
head and before the corresponding service routine. The put routine should do
any processing that needs to be done immediately (for example, processing of
high priority messages). Any processing that can be deferred should be left for
the corresponding service routine.

The service routine is used to implement flow control, handle de-packetization
of messages, perform deferred processing, and handle resource allocation. Once
the service routine is enabled, it always runs before any user level code. The
put and service routines must not call sleep() and cannot access the u _area area,
because they are executed asynchronously with respect to any process.

The following example shows a STREAMS module read-side put routine:

Modules 8-1

Modules

The following briefly describes the code:

8-2

• A pointer to a queue defining an instance of the module and a pointer to
a message are passed to the put routine.

• The put routine switches on the type of the message. For each message
type, the put routine either enqueues the message for further processing
by the module service routine, or passes the message to the next module
in the Stream.

• High priority messages are processed immediately by the put routine and
passed to the next module.

• Ordinary (or normal) messages are either enqueued or passed along the
Stream.

Programmer's Gulde: STREAMS

Modules

This example shows a module write-side put routine:

The write-side put routine, unlike the read-side, may be passed M_IOCTL mes
sages. It is up to the module to recognize and process the ioctl command, or
pass the message downstream if it does not recognize the command.

The following example shows a general scenario employed by the module's ser
vice routine:

Modules 8-3

Modules

The steps are:

8-4

• Retrieve the first message from the queue using getq().

• If the message is high priority, process it immediately, and pass it along
the Stream.

• Otherwise, the service routine should use the canput() utility to determine
if the next module or driver that enqueues messages is within acceptable
flow control limits. The canput() routine goes down (or up on the read
side) the Stream until it reaches a module, a driver, or the Stream head
with a service routine. When it reaches one, it looks at the total message
space currently allocated at that queue for enqueued messages. If the
amount of space currently used at that queue exceeds the high water
mark, the canput() routine returns false (zero). If the next queue with a
service routine is within acceptable flow control limits, canput() returns
true (nonzero).

• If canput() returns false, the service routine should return the message to
its own queue using the putbq() routine. The service routine can do no
further processing at this time, and it should return.

Programmer's Gulde: STREAMS

Modules

• If canput() returns true, the service routine should complete any process
ing of the message. This may involve retrieving more messages from the
queue, (de)-allocating header and trailer information, and performing con
trol function for the module.

• When the service routine is finished processing the message, it may call
the putnext() routine to pass the resulting message to the next queue.

• Above steps are repeated until there are no messages left on the queue
(that is, getq() returns NULL) or canput() returns false.

Fi lter Module Example

The module shown next, cnnod, is an asymmetric filter. On the write-side, new
line is converted to carriage return followed by newline. On the read-side, no
conversion is done. The declarations of this module are essentially the same as
those of the null module presented in the previous chapter:

Modules 8-5

Modules

A master.d file to configure crmod is shown in Appendix E. stropts.h includes
definitions of flush message options common to user level, modules and drivers.
modopen and modclose are unchanged from the null module example shown in
Chapter 7. modrput is like modput from the null module.

Note that, in contrast to the null module example, a single module_info struc
ture is shared by the read-side and write-side. The module_ info includes the
flow control high and low water marks (512 and 128) for the write queue.
(Though the same module_ info is used on the read queue side, the read-side
has no service procedure so flow control is not used.) The qinit contains the
service procedure pointer.

The write-side put procedure, the beginning of the service procedure, and an
example of flushing a queue are shown next:

8-6 Programmer's Gulde: STREAMS

Modu les

modwput, the write put procedure, switches on the message type. High priority
messages that are not type M _FLUSH are putnext to avoid scheduling. The
others are queued for the service procedure. An M _FLUSH message is a
request to remove messages on one or both queues. It can be processed in the
put or service procedure.

modwsro is the write service procedure. It takes a single argument, a pointer to
the write queue. modwsro processes only one high priority message, M_FLUSH.
No other high priority messages should reach modwsro.

Modules 8-7

Modules

For an M _FLUSH message, modwsro checks the first data byte. If FLUSHW
(defined in stropts.h) is set, the write queue is flushed by use of the flushq()
utility (see Appendix C). flushq() takes two arguments, the queue pointer and a
flag. The flag indicates what should be flushed, data messages (FLUSHDATA)
or everything (FLUSHALL). In the example, data includes M_DATA,
M_DELAY, M_PROTO, and M_PCPROTO messages. The choice of what types
of messages to flush is module specific.

Ordinary messages will be returned to the queue if

canput (q-><l._next)

returns false, indicating the downstream path is blocked. The example contin
ues with the remaining part of modwsrv processing M_DATA messages:

8-8 Programmer's Gulde: STREAMS

Modu les

Modu les 8-9

Modules

The differences in M_DATA processing between this and the example in
Chapter 5 (see "Message Allocation and Freeing'') relate to the manner in which
the new messages are forwarded and flow controlled. For the purpose of
demonstrating alternative means of processing messages, this version creates
individual new messages rather than a single message containing multiple mes
sage blocks. When a new message block is full, it is immediately forwarded
with the pubtext() routine rather than being linked into a single, large message
(as was done in the Chapter 5 example). This alternative may not be desirable
because message boundaries will be altered and because of the additional over
head of handling and scheduling multiple messages.

When the filter processing is performed (following push), flow control is
checked [with canputO] after, rather than before, each new message is for
warded. This is done because there is no provision to hold the new message
until the queue becomes unblocked. If the downstream path is blocked, the
remaining part of the original message is returned to the queue. Otherwise,
processing continues.

8-1 0 Programmer's Gulde: STREAMS

Flow Contro l

To utilize the STREAMS flow control mechanism, modules must use service
procedures, invoke canput() before calling putnext(), and use appropriate values
for the high and low water marks.

Module flow control limits the amount of data that can be placed on a queue. It
prevents depletion of buffers in the buffer pool. Flow control is advisory in
nature and it can be bypassed. It is managed by high and low water marks and
regulated by QW ANTW and QFULL flags. Module flow control is imple
mented by using the canput(), getq(), putq(), putbq(), insq(), and rmvq() rou
tines.

The following scenario takes place normally in flow control when a module and
driver are in sync:

• A driver sends data to a module using the putnext() routine, and the
module's put procedure queues data using putq(). The putq() routine
then increments the module's q_count by the number of bytes in the mes
sage and enables the service procedure. When STREAMS scheduling runs
the service procedure, the service procedure then retrieves the data by
calling the getq() utility, and getq() decrements q_count by an appropriate
value.

If the module cannot process data at the rate at which the driver is sending the
data, the following happens:

• The module's q_count goes above its high water mark, and the QFULL
flag is set by putq(). The driver's canput() fails, and canput() sets
QW ANTW flag in the module's queue. The driver may send a command
to the device to stop input, queue the data in its own queue, or drop the
data. In the meanwhile, the module's q_count falls below its low water
mark [by getq()] and getq() finds the nearest back queue with a service
procedure and enables it. The scheduler then runs the service procedure.

The next two examples show a line discipline module's flow control. The first
example is a read-side line discipline module:

Modules 8-1 1

Flow Control

The following shows a write-side line discipline module:

8-1 2 Programmer's Guide: STREAMS

Flow Control

Modules 8-1 3

Design G u idel ines

Module developers should follow these guidelines:

• Messages types that are not understood by the modules should be passed
to the next module.

• The module that acts on an M_IOCTL message should send an
M_IOCACK or M_IOCNAK message in response to the ioctl. If the
module does not understand the ioctl, it should pass the M _IOCTL mes
sage to the next module.

• Modules should be designed in such way that they don't pertain to any
particular driver but can be used by all drivers.

• In general, modules should not require the data in an M_DATA message
to follow a particular format, such as a specific alignment. This makes it
easier to arbitrarily push modules on top of each other in a sensible
fashion. Not following this rule may limit module reusability.

• Filter modules pushed between a service user and a service provider may
not alter the contents of the M PROTO or M PCPROTO block in mes-- -

sages. The contents of the data blocks may be manipulated, but the mes-
sage boundaries must be preserved.

Also see "Design Guidelines" in Chapter 7.

8-1 4 Programmer's Gulde: STREAMS

g Drivers

Drivers
Overview of Drivers

• Driver Classification
• Driver Configuration
• Writing a Driver
• Major and Minor Device Numbers

STREAMS Drivers
• Printer Driver Example
• Driver Flow Control

Cloning

Loop-Around Driver

Design Guideli nes

Table of Contents

9-1
9-1
9-1
9-2
9-3
9-5
9-6
9-9
9-1 6

9-1 8

9-20

9-30

Drivers

This chapter describes the operation of a STREAMS driver and also discusses
some of the processing typically required in drivers.

Unlike a module, a device driver must have an interrupt routine so that it is
accessible from a hardware interrupt as well as from the Stream. A driver can
have multiple Streams connected to it. Multiple connections occur when more
than one minor device of the same driver is in use and in the case of multiplex
ors (multiplexing is discussed in Chapter 10). However, these particular differ
ences are not recognized by the STREAMS mechanism. They are handled by
developer-provided code included in the driver procedures.

Overview of Drivers

This section provides a brief overview of the UNIX® system drivers. This is not
an all-inclusive description, but an introduction and general information on
drivers. For more detailed information, see Block and Character Interface (BC!)
Driver Development Guide and Block and Character Interface (BCT) Driver Reference
Manual.

A driver is software that provides an interface between the operating system
and a device. The driver controls the device in response to kernel commands,
and user-level programs access the device through system calls. The system
calls interface with the file system and process control system, which in tum
access the drivers. The driver provides and manages a path for the data to and
from the hardware device, and services interrupts issued by the device con
troller.

Driver Classification

In general, drivers are grouped according to the type of the device they control,
the access method (the way data are transferred), and the interface between the
driver and the device.

The type can be hardware or software. A hardware driver controls a physical
device such as a disk. A software driver, also called a pseudo device, controls
software, which in turn may interface with a hardware device. The software
driver may also support pseudo devices that have no associated physical device.

Drivers 9-1

Drivers

Drivers can be character-type or block-type, but many support both access
methods. In character-type transfer, data are read a character at a time or as a
variable length stream of bytes, the size of which is determined by the device.
In block-type access, data transfer is performed on fixed-length blocks of data.
Devices that support both block- and character-type access must have a separate
special device file for each access method. Character access devices can also use
"raw" (also called unbuffered) data transfer that takes place directly between
user address space and the device. Unbuffered data transfer is used mainly for
administrative functions where the speed of the specific operation is more
important than overall system performance.

The driver interface refers to the system structures and kernel interfaces used by
the driver. For example, S1REAMS is an interface.

Driver Configuration

For a driver to be recognized as part of the system, information on driver type,
where object code resides, interrupts, and so on, must be stored in appropriate
files.

The following summarizes information needed to include a driver in the system
(this information is unique to the AT&T 3B2):

/etc/master.d This directory contains the master files. A master file sup
plies information to the system initialization software to
describe different attributes of a driver. There is one master
file for each driver in the system.

/stand/system This file contains entries for each driver and indicates to the
system initialization software whether a driver is to be
included or excluded during configuration.

/dev

/boot

9-2

This directory contains special files that provide applications
with a way to access drivers via file operators.

This directory contains bootable object files that are used to
create a new version of the UNIX operating system when the
processor is booted.

Programmer's Gulde: STREAMS

Drivers

Writing a Driver

All drivers are identified by a string of up to four characters called the prefix.
The prefix is defined in the master file for the driver and is added to the name
of the driver routines. For example, the open routine for the driver with the
"xyz" prefix is xyzopen.

The location of the driver source code is determined by whether the driver is a
part of the core operating system or an add-on to the core operating system.

Writing a driver differs from writing other C programs in the following ways:

• A driver does not have a main.c routine. Rather, driver entry points are
given specific names and accessed through switch tables.

• A driver functions as a part of the kernel. Consequently, a poorly written
driver can degrade system performance or corrupt the system.

• A driver cannot use system calls or the C library, because the driver func
tions at a lower level.

• A driver cannot use floating point arithmetic.

• A driver cannot use archives or shared libraries, but frequently used sub
routines can be put in separate files in the source code directory for the
driver.

Driver code, like other system software, uses the advanced C language capabili
ties. These include: bit-manipulation capabilities, casting of data types, and use
of header files for defining and declaring global data structures.

Driver code includes a set of entry point routines:

• initialization entry points that are accessed through io init and
io_start arrays during system initialization.

• switch table entry points that are accessed through bdevsw (block
access) and cdevsw (character-access) switch tables when the appropriate
system call is issued.

• interrupt entry points that are accessed through the interrupt vector table
when the hardware generates an interrupt.

Drivers 9.3

Drivers

The following lists rules of driver development:

9-4

• All drivers must have an associated file in the master.d directory.

• All drivers should have finclude system header files that define data
structures used in the driver.

• Drivers may have an init and/ or a start routine to initialize the driver.

Software drivers will usually have little to initialize, because there is no
hardware involved. An init routine is used when a driver needs to initial
ize but does not need any system services. init routines are run before
system services are initialized (like the kernel memory allocator, for exam
ple). When a driver needs to do initialization that requires system ser
vices, a start routine is used. The start routines are run after system ser
vices have been initialized.

• Drivers will have open and close routines.

• Most drivers will have an interrupt handler routine.

The driver developer is responsible for supplying an interrupt routine for
the device's driver. The UNIX system provides a few interrupt handling
routines for hardware interrupts, but the developer has to supply the
specifics about the device.

In general, a prefixint interrupt routine should be written for any device
that does not send separate transmit and receive interrupts. TTY devices
that request separate transmit and receive interrupts can have two
separate interrupt routines associated with them; prefixxinit to transmit an
interrupt, and prefixrint to receive an interrupt.

In addition to hardware interrupts, many computers also support software
interrupts. For example, AT&T computers support Programmed Interrupt
Requests (PIRs). A PIR is generated by writing an integer into a logical
register address assigned to the interrupt vector table.

• Most drivers will have static subordinate driver routines to provide the
functionality for the specific device. The names of these routines should
include the driver prefix, although this is not absolutely required since the
routine is declared as static.

Programmer's Gulde: STREAMS

Drivers

• A bootable object file and special device files are also needed for a driver
to be fully functional.

Major and Minor Device Numbers

The UNIX System V operating system identifies and accesses peripheral devices
by major and minor numbers. When a driver is installed and a special device
file is created, a device then appears to the user application as a file. A device is
accessed by opening, reading, writing, and closing a special device file that has
the proper major and minor device numbers.

The major number identifies a driver for a controller. The minor number
identifies a specific device. Major numbers are assigned sequentially by either
the system initialization software at boot time for hardware devices, by a pro
gram such as drvinstall, or by administrator direction. The major number for a
software device is assigned automatically by the drvinstall command. Minor
numbers are designated by the driver developer.

Major and minor numbers can be external or internal.

External major numbers for software devices are static and assigned sequentially
to the appropriate field in the master file by the drvinstall(lM} command.
External major numbers for hardware devices correspond to the board slot and
are dynamically assigned by the autoconfig process at system boot time. The
mknod(lM) command is then used to create the files (or nodes) to be associated
with the device. External major numbers are those visible to the user.

Internal major numbers serve as an index into the cdevsw and bdevsw switch
tables. These are assigned by the autoconfiguration process when drivers are
loaded and they may change every time a full-configuration boot is done. The
system uses the MAJOR table to translate external major numbers to the internal
major numbers needed to access the switch tables.

One driver may control several devices, but each device will have its own exter
nal major number and all those external major numbers are mapped to one
internal major number for the driver.

Minor numbers are determined differently for different types of devices. Typi
cally, minor numbers are an encoding of information needed by the controller
board.

Drivers 9-5

Drivers

External minor numbers are controlled by a driver developer, although there
are conventions enforced for some types of devices by some utilities. For exam
ple, a tape drive may interface with a hardware controller (device) to which
several tape drives (subdevices) are attached. All tape drives attached to one
controller will have the same external major number, but each drive will have a
different external minor number.

Internal minor numbers are used with hardware drivers to identify the logical
controller that is being addressed. Since drivers that control multiple devices
(controllers) usually require a data structure for each configured device, drivers
address the per-controller data structure by the internal minor number rather
than the external major number.

The logical controller numbers are assigned sequentially by the central controller
firmware at self-configuration time. The internal minor device number is calcu
lated from the MINOR array in the kernel by multiplying the logical controller
number by the value of the #DEV field (number of devices per controller) in the
master file.

The internal minor number for all software drivers is 0.

The MAJOR and MINOR tables map external major and minor numbers to the
internal major number. The switch tables will have only as many entries as
required to support the drivers installed on the system. Switch table entry
points are activated by system calls that reference a special device file that sup
plies the external major number and instructions on whether to use bdevsw or
cdevsw. By mapping the external major number to the corresponding internal
major number in the MAJOR table, the system knows which driver routine to
activate. The routines getmajor() and getminor() return an internal major and
minor number for the device. The routines getemajor() and geteminor() return
an external major and minor number for the device.

STREAMS Drivers

At the interface to hardware devices, character 1/0 drivers have interrupt entry
points; at the system interface, those same drivers generally have direct entry
points (routines) to process open, close, read, write, poll, and ioctl system calls.

9-6 Programmer's Gulde: STREAMS

Drivers

STREAMS device drivers have interrupt entry points at the hardware device
interface and have direct entry points only for the open and close system calls.
These entry points are accessed via STREAMS, and the call formats differ from
traditional character device drivers. (STREAMS drivers are character drivers,
too. We call the non-STREAMS character drivers traditional character drivers or
non-STREAMS character drivers.) The put procedure is a driver's third entry
point, but it is a message (not system) interface. The Stream head translates
write and ioctl calls into messages and sends them downstream to be processed
by the driver's write queue put procedure. read is seen directly only by the
Stream head, which contains the functions required to process system calls. A
driver does not know about system interfaces other than open and close, but it
can detect the absence of a read indirectly if flow control propagates from the
Stream head to the driver and affects the driver's ability to send messages
upstream.

For input processing, when the driver is ready to send data or other information
to a user process, it does not wake up the process. It prepares a message and
sends it to the read queue of the appropriate (minor device) Stream. The
driver's open routine generally stores the queue address corresponding to this
Stream.

For output processing, the driver receives messages in place of a write call. If
the message can not be sent immediately to the hardware, it may be stored on
the driver's write message queue. Subsequent output interrupts can remove
messages from this queue.

Figure 9-1 shows multiple Streams (corresponding to minor devices) to a com
mon driver. There are two distinct Streams opened from the same major device.
Consequently, they have the same streamtab and the same driver procedures.

The configuration mechanism distinguishes between STREAMS devices and
traditional character devices, because system calls to STREAMS drivers are pro
cessed by STREAMS routines, not by the UNIX system driver routines. In the
cdevsw file, the field d _str provides this distinction. See Appendix E for details.

Multiple instantiations (minor devices) of the same driver are handled during
the initial open for each device. Typically, the queue address is stored in a
driver-private structure array indexed by the minor device number. This is for
use by the interrupt routine which needs to translate from device number to a
particular Stream. The qytr of the queue will point to the private data struc
ture entry. When the messages are received by the queue, the calls to the driver

Drivers 9-7

Drivers

put and service procedures pass the address of the queue, allowing the pro
cedures to detennine the associated device.

A driver is at the end of a Stream. As a result, drivers must include standard
processing for certain message types that a module might simply be able to pass
to the next component. . ' During the open and close routine .the kern�l locks the

.
devi�e snod�. Th�s

only one open or close can be active at a time per ma1or/m1nor device pai r .

Figure 9·1 : Device Driver Streams

9-8

major/devO
vnode

major/devl
vnode

Stream
Head

Stream
Head

Module(s) Module(s)

Port
0

Driver Procedures
and

Interrupt Code

Port
1

Programmer's Gulde: STREAMS

Drivers

Printer Driver Example

The next example shows how a simple interrupt-per-character line printer driver
could be written. The driver is unidirectional and has no read-side processing.
It demonstrates some differences between module and driver programming,
including the following:

Open handling

Flush handling

ioctl handling

Declarations

A driver is passed a device number or is asked to select
one.

A driver must loop M _FLUSH messages back upstream.

A driver must send a negative acknowledgement for
ioctl messages it does not understand. This is discussed
under ''Module and Driver ioctls" in Chapter 7.

The driver declarations are as follows (see also "Module and Driver Declara
tions" in Chapter 7):

Drivers 9-9

Drivers

Configuring a STREAMS driver requires only the streamtab structure to be
externally accessible. For hardware drivers, the interrupt handler must also be
externally accessible. All other STREAMS driver procedures would typically be
declared stat ic.

The streamtab structure must be defined as prefixinfo, where prefix is the value
of the prefix field in the master file for this driver. The values in the module
name and ID fields in the module_ info structure should be unique in the sys
tem. Note that, as in character 1/0 drivers, extern variables are assigned
values in the master file when configuring drivers or modules.

There is no read-side put or service procedure. The flow control limits for use
on the write-side are 50 bytes for the low water mark and 150 bytes for the high
water mark. The private lp structure is indexed by the minor device number
and contains these elements:

9·1 0 Programmer's Guide: STREAMS

Drivers

flags A set of flags. Only one bit is used: BUSY indicates that output is
active and a device interrupt is pending.

msg A pointer to the current message being output.

qptr A back pointer to the write queue. This is needed to find the write
queue during interrupt processing.

Driver Open
The STREAMS mechanism allows only one Stream per minor device. The
driver open routine is called whenever a STREAMS device is opened. Opening
also allocates a private data structure. The driver open, lpopen in this example,
has the same interface as the module open:

Drivers 9-1 1

Drivers

The Stream flag, sflag, must have the value 0, indicating a nonnal driver open.
deop is a pointer to the major/minor device number for this port. After check
ing sflag, the STREAMS open flag, lpopen extracts the minor device pointed to by
deop, using the getminor() function. credp is a pointer to a credentials structure.

The minor device number selects a printer. The device number pointed to by
deop must be less than lp_cnt, the number of configured printers. Otherwise
failure occurs.

The next check, if (q->q_ptr) . . . , determines if this printer is already open.
If it is, EBUSY is returned to avoid merging printouts from multiple users. q_ytr
is a driver/module private data pointer. It can be used by the driver for any
purpose and is initialized to zero by STREAMS. In this example, the driver sets
the value of q_ytr, in both the read and write queue structures, to point to a
private data structure for the minor device, lp _lp[deuice].

There are no physical pointers between queues. WR is a queue pointer macro.
WR(q) generates the write pointer from the read pointer. RD and OTHER are
also the queue pointer macros. RD(q) generates the read pointer from the write
pointer, and OTHER(q) generates the mate pointer from either. With the DDI,
WR, RD, and OTHER are functions.

Driver Flush Handling

The following write put procedure, lpwput, illustrates driver M_FLUSH han
dling. Note that all drivers are expected to incorporate flush handling.

If FLUSHW is set, the write message queue is flushed, and (in this example) the
leading message (lp->msq) is also flushed. spl5 is used to protect the critical
code, assuming the device interrupts at level 5.

Normally, if FLUSHR is set, the read queue would be flushed. However, in this
example, no messages are ever placed on the read queue, so it is not necessary
to flush it. The FLUSHW bit is cleared and the message is sent upstream using
qreply(). If FLUSHR is not set, the message is discarded.

The Stream head always performs the following actions on flush requests
received on the read-side from downstream. If FLUSHR is set, messages wait
ing to be sent to user space are flushed. If FLUSHW is set, the Stream head
clears the FLUSHR bit and sends the M _FLUSH message downstream. In this
manner, a single M_FLUSH message sent from the driver can reach all queues
in a Stream. A module must send two M _FLUSH messages to have the same
affect.

9-1 2 Programmer's Gulde: STREAMS

Drivers

lpwput enqueues M_DATA and M_IOCTL messages and, if the device is not
busy, starts output by calling lpout. Messages types that are not recognized are
discarded.

Drivers 9-1 3

Drivers

Driver Interrupt

The following example shows the interrupt routine in the printer driver.

lpint is the driver interrupt handler routine.

lpout simply takes a character from the queue and sends it to the printer. For
convenience, the message currently being output is stored in lp->msq.

lpoutchar sends a character to the printer and interrupts when complete. Printer
interface options need to be set before being able to print.

9-1 4 Programmer's Gulde: STREAMS

Drivers

Drivers 9·1 5

Drivers

Driver Close

The driver close routine is called by the Stream head. Any messages left on the
queue will be automatically removed by STREAMS. The Stream is dismantled
and the data structures are de-allocated.

Driver Flow Control

The same utilities (described in Chapter 8) and mechanisms used for module
flow control are used by drivers.

9-1 6 Programmer's Gulde: STREAMS

Drivers

When the message is queued, putq() increments the value of q_count by the size
of the message and compares the result against the driver's write high water
limit (q_hiwat) value. If the count exceeds q_hiwat, the putq() utility routine will
set the internal FULL indicator for the driver write queue. This will cause mes
sages from upstream to be halted [canput() returns FALSE] until the write
queue count reaches q_lowat. The driver messages waiting to be output are
dequeued by the driver output interrupt routine with getq(), which decrements
the count. If the resulting count is below q_lowat, the getq() routine will back
enable any upstream queue that had been blocked.

Device drivers typically discard input when unable to send it to a user process.
However, STREAMS allows flow control to be used on the driver read-side to
handle temporary upstream blocks.

To some extent, a driver or a module can control when its upstream transmis
sion will become blocked. Control is available through the M _ SETOPTS message
(see Appendix B) to modify the Stream head read-side flow control limits.

Drivers 9-1 7

Clon i ng

In many earlier examples, each user process connected a Stream to a driver by
opening a particular minor device of that driver. Often, however, a user process
wants to connect a new Stream to a driver regardless of which minor device is
used to access the driver. In the past, this typically forced the user process to
poll the various minor device nodes of the driver for an available minor device.
To alleviate this task, a facility called clone open is supported for STREAMS
drivers. H a STREAMS driver is implemented as a cloneable device, a single
node in the file system may be opened to access any unused device that the
driver controls. This special node guarantees that the user will be allocated a
separate Stream to the driver on every open call. Each Stream will be associ
ated with an unused major/minor device, so the total number of Streams that
may be connected to a particular cloneable driver is limited by the number of
minor devices configured for that driver.

The clone device may be useful, for example, in a networking environment
where a protocol pseudo-device driver requires each user to open a separate
Stream over which it will establish communication.

The decision to implement a STREAMS driver as a cloneable device is
made by the designers of the device driver.

Knowledge of clone driver implementation is not required to use it. A
description is presented here for completeness and to assist developers who
must implement their own clone driver.

There are two ways to create a clone device node in the file system. The first is
to have a node with major number 63 (major of the clone driver) and with a
minor number equal to the major number of the real device one wants to open.
For example, /dev/starlanOO might be major 40, minor 0 (normal open), and
/dev/starlan might be major 63, minor 40 (clone open).

The second way to create a clone device node is for the driver to designate a
special minor device as its clone entry point. Here, /dev/starlan might be major
40, minor 0 (clone open).

The former example will cause sfl.ag to be set to CLONEOPEN in the open rou
tine when /dev/starlan is opened. The latter will not. Instead, in the latter case
the driver has decided to designate a special minor device as its clone interface.
When the clone is opened, the driver knows that it should look for an unused
minor device. This implies that the reserved minor for the clone entry point
will never be given out.

9-1 8 Programmer's Gulde: STREAMS

In either case, the driver returns the new device number as:

'

Drivers

*devp = makedevice (qetma jor (*devp) , newminor) ;

makedevice is unique to the DOI interface. If the DOI interface is not used,
makedev can be used instead of makedevice.

Cloning

9-1 9

Loop-Arou nd Driver

The loop-around driver is a pseudo driver that loops data from one open
Stream to another open Stream. The user processes see the associated files
almost like a full-duplex pipe. The Streams are not physically linked. The
driver is a simple multiplexor that passes messages from one Stream's write
queue to the other Stream's read queue.

To create a connection, a process opens two Streams, obtains the minor device
number associated with one of the returned file descriptors, and sends the dev
ice number in an I_STR ioctl(2) to the other Stream. For each open, the driver
open places the passed queue pointer in a driver interconnection table, indexed
by the device number. When the driver later receives the I_STR as an
M _IOCTL message, it uses the device number to locate the other Stream's inter
connection table entry, and stores the appropriate queue pointers in both of the
Streams' interconnection table entries.

Subsequently, when messages other than M_IOCTL or M_FLUSH are received
by the driver on either Stream's write-side, the messages are switched to the
read queue following the driver on the other Stream's read-side. The resultant
logical connection is shown in Figure 9-2 (in the figure, the abbreviation QP
represents a queue pair). Flow control between the two Streams must be han
dled by special code since STREAMS will not automatically propagate flow con
trol information between two Streams that are not physically interconnected.

9-20 Programmer's Gulde: STREAMS

Figure 9-2: Loop-Around Streams

CLONE/
loop/dev3

Stream
Head

Module(s)

CLONE/
loop/dev7

Stream
Head

Module(s)

Loop-Around Driver

The next example shows the loop-around driver code. A master file to
configure the loop driver is shown in Appendix E. The loop structure contains
the interconnection information for a pair of Streams. loop _loop is indexed by
the minor device number. When a Stream is opened to the driver, the address
of the corresponding loop _loop element is placed in qytr (private data structure
pointer) of the read-side and write-side queues. Since STREAMS clears qytr
when the queue is allocated, a NULL value of qytr indicates an initial open.
loop _loop is used to verify that this Stream is connected to another open Stream.

The declarations for the driver are:

Drivers 9-21

Loop-Around Driver

The open procedure includes canonical clone processing which enables a single
file system node to yield a new minor device/vnode each time the driver is
opened:

9-22 Programmer's Guide: STREAMS

Loop-Around Driver

In loopopen, sflag can be CLONEOPEN, indicating that the driver should pick an
unused minor device (i.e., the user does not care which minor device is used).
In this case, the driver scans its private loop _loop data structure to find an
unused minor device number. If sflag has not been set to CLONEOPEN, the
passed-in minor device specified by getminor-> (*devp) is used.

Drivers 9-23

Loop-Around Driver

Since the messages are switched to the read queue following the other Stream's
read-side, the driver needs a put procedure only on its write-side:

9-24 Programmer's Guide: STREAMS

Loop-Around Driver

loopwput shows another use of an I_STR ioctl call (see Chapter 7, "Module and
Driver ioctls"). The driver supports a LOOP_SET value of ioc_cmd in the iocblk
of the M_IOCTL message. LOOP _SET instructs the driver to connect the
current open Stream to the Stream indicated in the message. The second block
of the M_IOCTL message holds an integer that specifies the minor device
number of the Stream to connect to.

The driver performs several sanity checks: Does the second block have the
proper amount of data? Is the "to" device in range? Is the "to" device open? Is
the current Stream disconnected? Is the "to" Stream disconnected?

Drivers 9-25

Loop-Around Driver

If everything checks out, the read queue pointers for the two Streams are stored
in the respective oqptr fields. This cross-connects the two Streams indirectly, via
loop_loop.

Canonical flush handling is incorporated in the put procedure:

Finally, loo-pwput enqueues all other messages (e.g., M_DATA or M_PROTO) for
processing by its service procedure. A check is made to see if the Stream is
connected. If not, an M _ERROR is sent upstream to the Stream head.

9-26 Programmer's Gulde: STREAMS

Loop-Around Dr iver

Certain message types can be sent upstream by drivers and modules to the
Stream head where they are translated into actions detectable by user
process(es). The messages may also modify the state of the Stream head:

M ERROR Causes the Stream head to lock up. Message transmis
sion between Stream and user processes is terminated.
All subsequent system calls except close(2) and poll(2)
will fail. Also causes an M_FLUSH clearing all mes
sage queues to be sent downstream by the Stream
head.

M_HANGUP

M _ SIG/M _PCSIG

Terminates input from a user process to the Stream.
All subsequent system calls that would send messages
downstream will fail. Once the Stream head read mes
sage queue is empty, EOF is returned on reads. Can
also result in the SIGHUP signal being sent to the pro
cess group.

Causes a specified signal to be sent to a process.

putctll{) and putctl{) are utilities that allocate a non-data (i.e., not M_DATA,
M_DELAY, M_PROTO, or M_PCPROTO) type message, place one byte in the
message (for putctll) and call the put procedure of the specified queue.

Service procedures are required in this example on both the write-side and
read-side for flow control:

Drivers 9-27

Loop-Around Driver

The write service procedure, loopwsrv, takes on the canonical form. The queue
being written to is not downstream, but upstream (found via oqptr) on the other
Stream.

In this case, there is no read-side put procedure so the read service procedure,
looprsrv, is not scheduled by an associated put procedure, as has been done pre
viously. looprsro is scheduled only by being back-enabled when its upstream
becomes unstuck from flow control blockage. The purpose of the procedure is

9-28 Programmer's Gulde: STREAMS

Loop-Around Driver

to re-enable the writer (loopwsrv) by using oqptr to find the related queue.
loopwsrv can not be directly back-enabled by STREAMS because there is no
direct queue linkage between the two Streams. Note that no message ever gets
queued to the read service procedure. Messages are kept on the write-side so
that flow control can propagate up to the Stream head. The qenable() routine
schedules the write-side service procedure of the other Stream.

loopclose breaks the connection between the Streams:

loopclose sends an M _HANGUP message up the connected Stream to the Stream
head.

Drivers

This driver can be implemented much more cleanly by actually linking the
q_next pointers of the queue pairs of the two Streams.

9-29

Design G u idel ines

Driver developers should follow these guidelines:

• Messages that are not understood by the drivers should be freed.

• A driver must process an M_IOCTL message. Otherwise, the Stream head
will block for an M _ IOCNAK or M _IOCACK until the timeout (poten
tially infinite) expires.

• If a driver does not understand an ioctl, an M_IOCNAK message must be
sent to upstream.

• Terminal drivers must always acknowledge the EUC ioctls whether they
understand them or not.

• The Stream head locks up the Stream when it receives an M _ERROR mes
sage, so driver developers should be careful when using the M _ERROR
message.

• A hardware driver must have an interrupt routine.

• If a driver wants to allocate a controlling terminal, it should send an
M _ SETOPTS message with the SO_ ISTIY flag set upstream.

• A driver must be a part of the kernel for it to be opened.

Also see "Design Guidelines" in Chapter 7.

9-30 Programmer's Gulde: STREAMS

1 Q Mult iplexing

Multi plexing 1 0-1
Building a Mu ltiplexor 1 0-2
Dismantling a Multiplexor 1 0-1 1
Routing Data Through a Multiplexor 1 0-1 2

Connecting/Disconnecting Lower Streams 1 0-1 3
Connecting Lower Streams 1 0- 1 3
Disconnecting Lower Streams 1 0-1 s

Multi plexor Construction Example 1 0- 1 s

Multi plexing Driver 1 0-1 9
Upper Write Put Procedure 1 0-23
Upper Write Service Procedu re 1 0-27
Lower Write Service Procedu re 1 0-28
Lower Read Put Procedure 1 0-28

Persistent Links 1 0-32

Design Guidel i nes 1 o-37

Table of Contents

Multi plexing

This chapter describes how STREAMS multiplexing configurations are created
and also discusses multiplexing drivers. A STREAMS multiplexor is a driver
with multiple Streams connected to it. The primary function of the multiplexing
driver is to switch messages among the connected Streams. Multiplexor
configurations are created from user level by system calls.

STREAMS related system calls are used to set up the "plumbing," or Stream
interconnections, for multiplexing drivers. The subset of these calls that allows
a user to connect (and disconnect) Streams below a driver is referred to as the
multiplexing facility. This type of connection is referred to as a 1-to-M, or
lower, multiplexor configuration. This configuration must always contain a
multiplexing driver, which is recognized by STREAMS as having special charac
teristics.

Multiple Streams can be connected above a driver by use of open(2) calls. This
was done for the loop-around driver and for the driver handling multiple minor
devices in Chapter 9. There is no difference between the connections to these
drivers, only the functions performed by the driver are different. In the multi
plexing case, the driver routes data between multiple Streams. In the device
driver case, the driver routes data between user processes and associated physi
cal ports. Multiplexing with Streams connected above is referred to as an N-to-
1, or upper, multiplexor. STREAMS does not provide any facilities beyond
open(2) and dose(2) to connect or disconnect upper Streams for multiplexing
purposes.

From the driver's perspective, upper and lower configurations differ only in the
way they are initially connected to the driver. The implementation require
ments are the same: route the data and handle flow control. All multiplexor
drivers require special developer-provided software to perform the multiplexing
data routing and to handle flow control. STREAMS does not directly support
flow control among multiplexed Streams.

M-to-N multiplexing configurations are implemented by using both of the above
mechanisms in a driver.

As discussed in Chapter 9, the multiple Streams that represent minor devices
are actually distinct Streams in which the driver keeps track of each Stream
attached to it. The STREAMS subsystem does not recognize any relationship
between the Streams. The same is true for STREAMS multiplexors of any
configuration. The multiplexed Streams are distinct and the driver must be
implemented to do most of the work.

Multlplexlng 1 0-1

Multlplexlng

In addition to upper and lower multiplexors, more complex configurations can
be created by connecting Streams containing multiplexors to other multiplexor
drivers. With such a diversity of needs for multiplexors, it is not possible to
provide general purpose multiplexor drivers. Rather, STREAMS provides a
general purpose multiplexing facility. The facility allows users to set up the
inter-module/ driver plumbing to create multiplexor configurations of generally
unlimited interconnection.

Bui lding a Mu ltip lexor

This section builds a protocol multiplexor with the multiplexing configuration
shown in Figure 10-1 . To free users from the need to know about the underlying
protocol structure, a user-level daemon process will be built to maintain the
multiplexing configuration. Users can then access the transport protocol directly
by opening the transport protocol (TP) driver device node.

An intemetworking protocol driver (IP) routes data from a single upper Stream
to one of two lower Streams. This driver supports two STREAMS connection
beneath it. These connections are to two distinct networks; one for the IEEE
802.3 standard via the 802.3 driver, and other to the IEEE 802.4 standard via the
802.4 driver. The TP driver multiplexes upper Streams over a single Stream to
the IP driver.

1 0-2 Programmer's Gulde: STREAMS

Figure 1 0-1 : Protocol Multiplexor

_ _ _ _ y_y_y _ _ �� ��-� -

802.4
Driver

TP
Driver

IP
Driver

802.3
Driver

Kernel Space

Multiplexing

The following example shows how this daemon process sets up the protocol
multiplexor. The necessary declarations and initialization for the daemon pro
gram are as follows:

Multip lexing 1 0-3

Multiplexlng

This multi-level multiplexed Stream configuration will be built from the bottom
up. Therefore, the example begins by first constructing the Internel Protocol (IP)
multiplexor. This multiplexing device driver is treated like any other software
driver. It owns a node in the UNIX file system and is opened just like any
other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver, thus creat
ing separate Streams above each driver as shown in Figure 10-2. The Stream to
the 802.4 driver may now be connected below the multiplexing IP driver using
the I LINK ioctl call.

1 0-4 Programmer's Gulde: STREAMS

Figure 1 0-2: Before Link

802.4
Driver

- - - - - _ l!�! §e�� -

IP
Driver

Kernel Space

The sequence of instructions to this point is:

Multip lexing

I_LINK takes two file descriptors as arguments. The first file descriptor, fd_ip,
must reference the Stream connected to the multiplexing driver, and the second
file descriptor, fd _ 802 _ 4, must reference the Stream to be connected below the
multiplexor. Figure 10-3 shows the state of these Streams following the I_ LINK
call. The complete Stream to the 802.4 driver has been connected below the IP

Multlplexlng 1 0-5

Multlplexlng

driver. The Stream head's queues of the 802.4 driver will be used by the IP
driver to manage the lower half of the multiplexor.

Figure 1 0-3: IP Multiplexor After First Link

IP
Driver

802.4
Driver

I_ LINK will return an integer value, called muxid, which is used by the multi
plexing driver to identify the Stream just connected below it. This muxid is
ignored in the example, but it is useful for dismantling a multiplexor or routing
data through the multiplexor. Its significance is discussed later.

The following sequence of system calls is used to continue building the intemet
working protocol multiplexor (IP):

1 0-6 Programmer's Guide: STREAMS

All links below the IP driver have now been established, giving the
configuration in Figure 10-4.

Figure 1 0-4: IP Multiplexor

- - - - - - - - - --� - - - - - - - - Y!."!3�':!'-

Controllin�
Stream

Multip lexing

802.4
Driver

IP
Driver

802.3
Driver

Kemel Space

Multiplexing

1 0-7

Multiplexing

The Stream above the multiplexing driver used to establish the lower connec
tions is the controlling Stream and has special significance when dismantling the
multiplexing configuration. This will be illustrated later in this chapter. The
Stream referenced by fd_ip is the controlling Stream for the IP multiplexor. ' !he �rder in whic� t�e Streams in the mu.lt iplexing. configuration. are opened

1s unimportant. H 1t 1s necessary to have intermediate modules in the Stream
between the IP driver and media drivers, these modules must be added to
the Streams associated with the media drivers (using I PUSH) before the
media drivers are attached below the m ultiplexor.

-

The number of Streams that can be linked to a multiplexor is restricted by the
design of the particular multiplexor. The manual page describing each driver
(typically found in section 7) describes such restrictions. However, only one
I_ LINK operation is allowed for each lower Stream; a single Stream cannot be
linked below two multiplexors simultaneously.

Continuing with the example, the IP driver will now be linked below the tran
sport protocol (TP) multiplexing driver. As seen earlier in Figure 10-1, only one
link will be supported below the transport driver. This link is formed by the
following sequence of system calls:

The multi-level multiplexing configuration shown in Figure 10-5 has now been
created.

1 0-8 Programmer's Gulde: STREAMS

Figure 1 0-5: TP Multiplexor

- - - - - - - - - --� - - - - - - - -Y'!"! ?ea_� _

Controllin�
Stream

802.4
Driver

TP
Driver

IP
Driver

802.3
Driver

Kernel Space

Multiplexing

Because the controlling Stream of the IP multiplexor has been linked below the
TP multiplexor, the controlling Stream for the new multi-level multiplexor
configuration is the Stream above the TP multiplexor.

At this point the file descriptors associated with the lower drivers can be dosed
without affecting the operation of the multiplexor. If these file descriptors are
not dosed, all subsequent read, write, ioctl, poll, getmsg, and putmsg system
calls issued to them will fail. That is because I LINK associates the Stream head
of each linked Stream with the multiplexor, so the user may not access that
Stream directly for the duration of the link.

Multiplexing 1 0-9

Multiplexing

The following sequence of system calls completes the daemon example:

To summarize, Figure 10-5 shows the multi-level protocol multiplexor. The
transport driver supports several simultaneous Streams. These Streams are mul
tiplexed over the single Stream connected to the IP multiplexor. The mechan
ism for establishing multiple Streams above the transport multiplexor is actually
a by-product of the way in which Streams are created between a user process
and a driver. By opening different minor devices of a STREAMS driver,
separate Streams will be connected to that driver. Of course, the driver must be
designed with the intelligence to route data from the single lower Stream to the
appropriate upper Stream.

The daemon process maintains the multiplexed Stream configuration through an
open Stream (the controlling Stream) to the transport driver. Meanwhile, other
users can access the services of the transport protocol by opening new Streams
to the transport driver; they are freed from the need for any unnecessary
knowledge of the underlying protocol configurations and sub-networks that
support the transport service.

Multi-level multiplexing configurations should be assembled from the bottom
up. That is because the passing of ioctls through the multiplexor is determined
by the nature of the multiplexing driver and cannot generally be relied on.

1 0-1 0 Programmer's Gulde: STREAMS

Mu ltip lexing

Dismantl ing a Multiplexor

Streams connected to a multiplexing driver from above with open, can be dis
mantled by closing each Stream with dose. The mechanism for dismantling
Streams that have been linked below a multiplexing driver is less obvious, and
is described below.

The I_ UNLINK ioctl call is used to disconnect each multiplexor link below a
multiplexing driver individually. This command has the form:

ioctl (fd, !_UNLINK, muxid) ;

where fd is a file descriptor associated with a Stream connected to the multiplex
ing driver from above, and muxid is the identifier that was returned by I_ LINK
when a driver was linked below the multiplexor. Each lower driver may be
disconnected individually in this way, or a special muxid value of -1 may be
used to disconnect all drivers from the multiplexor simultaneously.

In the multiplexing daemon program presented earlier, the multiplexor is never
explicitly dismantled. That is because all links associated with a multiplexing
driver are automatically dismantled when the controlling Stream associated with
that multiplexor is closed. Because the controlling Stream is open to a driver,
only the final call of dose for that Stream will close it. In this case, the daemon
is the only process that has opened the controlling Stream, so the multiplexing
configuration will be dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multi-level, multi
plexed Stream configuration, the controlling Stream for each multiplexor at each
level must be linked under the next higher level multiplexor. In the example,
the controlling Stream for the IP driver was linked under the TP driver. This
resulted in a single controlling Stream for the full, multi-level configuration.
Because the multiplexing program relied on closing the controlling Stream to
dismantle the multiplexed Stream configuration instead of using explicit
I_ UNLINK calls, the muxid values returned by I_ LINK could be ignored.

An important side effect of automatic dismantling on the close is that it is not
possible for a process to build a multiplexing configuration with I_ LINK and
then exit. That is because exit(2) will close all files associated with the process,
including the controlling Stream. To keep the configuration intact, the process
must exist for the life of that multiplexor. That is the motivation for implement
ing the example as a daemon process.

Multiplexing 1 0-1 1

Multlplexlng

However, if the process uses persistent links via the I_PLINK ioctl call, the mul
tiplexor configuration would remain intact after the process exits. Persistent
links are described later in this chapter.

Routing Data Through a Multiplexor

As demonstrated, S1REAMS provides a mechanism for building multiplexed
Stream configurations. However, the criteria on which a multiplexor routes
data is driver dependent. For example, the protocol multiplexor shown before
might use address information found in a protocol header to determine over
which sub-network data should be routed. It is the multiplexing driver's
responsibility to define its routing criteria.

One routing option available to the multiplexor is to use the muxid value to
determine to which Stream data should be routed (remember that each multi
plexor link is associated with a muxid). I_ LINK passes the muxid value to the
driver and returns this value to the user. The driver can therefore specify that
the muxid value must accompany data routed through it. For example, if a mul
tiplexor routed data from a single upper Stream to one of several lower Streams
(as did the IP driver), the multiplexor could require the user to insert the muxid
of the desired lower Stream into the first four bytes of each message passed to
it. The driver could then match the muxid in each message with the muxid of
each lower Stream, and route the data accordingly.

1 0-1 2 Programmer's Guide: STREAMS

Con necting/Disconnecting Lower Streams

Multiple Streams are created above a driver/multiplexor by use of the open sys
tem call on either different minor devices, or on a cloneable device file. Note
that any driver that handles more than one minor device is considered an upper
multiplexor.

To connect Streams below a multiplexor requires additional software within the
multiplexor. The main difference between STREAMS lower multiplexors and
STREAMS device drivers are that multiplexors are pseudo-devices and that mul
tiplexors have two additional qinit structures, pointed to by fields in the
stream.tab structure: the lower half read-side qinit and the lower half write-
side qinit

The multiplexor is conceptually divided into two parts: the lower half (bottom)
and the upper half (top). The multiplexor queue structures that have been allo
cated when the multiplexor was opened, use the usual qinit entries from the
multiplexor's stream.tab. This is the same as any open of the STREAMS device.
When a lower Stream is linked beneath the multiplexor, the qinit structures at
the Stream head are substituted by the bottom half qinit structures of the multi
plexors. Once the linkage is made, the multiplexor switches messages between
upper and lower Streams. When messages reach the top of the lower Stream,
they are handled by put and service routines specified in the bottom half of the
multiplexor.

Connecting Lower Streams

A lower multiplexor is connected as follows: the initial open to a multiplexing
driver creates a Stream, as in any other driver. open uses the first two stream.
tab structure entries to create the driver queues. At this point, the only distin
guishing characteristic of this Stream are non-NULL entries in the stream.tab
st_ muxrinit and st_ muxwinit fields.

These fields are ignored by open (see the rightmost Stream in Figure 10-6). Any
other Stream subsequently opened to this driver will have the same stream.tab
and thereby the same mux fields.

Next, another file is opened to create a (soon to be) lower Stream. The driver
for the lower Stream is typically a device driver (see the leftmost Stream in Fig
ure 10-6). This Stream has no distinguishing characteristics. It can include any
driver compatible with the multiplexor. Any modules required on the lower
Stream must be pushed onto it now.

Multlplexlng 1 0-1 3

Connecting/Disconnecting Lower Streams

Next, this lower Stream is connected below the multiplexing driver with an
I_ LINK ioctl call [see streamio(7)] . The Stream head points to the Stream head
routines as its procedures (known via its queue). An I_ LINK to the upper
Stream, referencing the lower Stream, causes STREAMS to modify the contents
of the Stream head's queues in the lower Stream. The pointers to the Stream
head routines, and other values, in the Stream head's queues are replaced with
those contained in the mux fields of the multiplexing driver's stream.tab.
Changing the Stream head routines on the lower Stream means that all subse
quent messages sent upstream by the lower Stream's driver will, ultimately, be
passed to the put procedure designated in st_muxrinit, the multiplexing driver.
The I_ LINK also establishes this upper Stream as the control Stream for this
lower Stream. STREAMS remembers the relationship between these two
Streams until the upper Stream is closed, or the lower Stream is unlinked.

Finally, the Stream head sends an M_IOCTL message with ioc_cmd set to
I_LINK to the multiplexing driver. The M_DATA part of the M_IOCTL con
tains a linkblk structure. The multiplexing driver stores information from the
linkblk structure in private storage and returns an M _ IOCACK message (ack
nowledgement). l_index is returned to the process requesting the I_ LINK. This
value can be used later by the process to disconnect this Stream.

An !_LINK is required for each lower Stream connected to the driver. Addi
tional upper Streams can be connected to the multiplexing driver by open calls.
Any message type can be sent from a lower Stream to user processes along any
of the upper Streams. The upper Streams provide the only interface between
the user processes and the multiplexor.

Note that no direct data structure linkage is established for the linked Streams.
The read queue's q_next will be NULL and the write queue's q_next will point to
the first entity on the lower Stream. Messages flowing upstream from a lower
driver (a device driver or another multiplexor) will enter the multiplexing driver
put procedure with l_qbot as the queue value. The multiplexing driver has to
route the messages to the appropriate upper (or lower) Stream. Similarly, a
message coming downstream from user space on any upper Stream has to be
processed and routed, if required, by the driver.

Also note that the lower Stream (see the headers and file descriptors in Figure
10-7) is no longer accessible from user space. This causes all system calls to the
lower Stream to return EINV AL, with the exception of close. This is why all
modules have to be in place before the lower Stream is linked to the multiplex
ing driver.

1 0-1 4 Programmer's Gulde: STREAMS

Connecting/Disconnecting Lower Streams

Finally, note that the absence of direct linkage between the upper and lower
Streams means that STREAMS flow control has to be handled by special code in
the multiplexing driver. The flow control mechanism cannot see across the
driver.

In general, multiplexing drivers should be implemented so that new Streams
can be dynamically connected to (and existing Streams disconnected from) the
driver without interfering with its ongoing operation. The number of Streams
that can be connected to a multiplexor is developer dependent.

Disconnecting Lower Streams

Dismantling a lower multiplexor is accomplished by disconnecting (unlinking)
the lower Streams. Unlinking can be initiated in three ways: an I_ UNLINK ioctl
referencing a specific Stream, an I_ UNLINK indicating all lower Streams, or the
last close of the control Stream. As in the link, an unlink sends a linkblk struc
ture to the driver in an M_IOCTL message. The I_ UNLINK call, which unlinks
a single Stream, uses the I _index value returned in the I_ LINK to specify the
lower Stream to be unlinked. The latter two calls must designate a file
corresponding to a control Stream which causes all the lower Streams that were
previously linked by this control Stream to be unlinked. However, the driver
sees a series of individual unlinks.

If no open references exist for a lower Stream, a subsequent unlink will
automatically close the Stream. Otherwise, the lower Stream must be closed by
close following the unlink. STREAMS will automatically dismantle all cascaded
multiplexors (below other multiplexing Streams) if their controlling Stream is
closed. An I_UNLINK will leave lower, cascaded multiplexing Streams intact
unless the Stream file descriptor was previously closed.

Multiplexing 1 0-1 5

M u lt iplexor Construction Example

This section describes an example o f multiplexor construction and usage. Figure
10-6 shows the Streams before their connection to create the multiplexing
configuration of Figure 10-7. Multiple upper and lower Streams interface to the
multiplexor driver. The user processes of Figure 10-7 are not shown in Figure
10-6.

Figure 1 0-6: Internet Multiplexor Before Connecting

r - 1
1 Setup and Supervisory Process 1
I I
I I

L I :,:-

d�� � -1- ,-�: +.� 1 -1 :,: ���� � 1 - 1 -�: t.:: _ 1 _1_ -fi�:�:.- 1 "
I I I I I
I I I I I

Stream Head Stream Head Stream Head Stream Head Stream Head

QUEUE Pr. A QUEUE Pr. B QUEUE Pr. C QUEUE Pair QUEUE Pair

Net 1
Module

Ethernet
Driver

LAPB
Driver

802.2
Driver

Multiplexor
Driver

The Ethernet, LAPB and IEEE 802.2 device drivers terminate links to other
nodes. The multiplexor driver is an Internet Protocol (IP) multiplexor that
switches data among the various nodes or sends data upstream to a user(s) in
the system. The Net modules would typically provide a convergence function
which matches the multiplexor driver and device driver interface.

1 0-1 6 Programmer's Gulde: STREAMS

Multiplexor Construction Example

Figure 10-6 depicts only a portion of the full, larger Stream. In the dotted rec
tangle above the IP multiplexor, there generally would be an upper transport
control protocol (TCP) multiplexor, additional modules and, possibly, additional
multiplexors in the Stream. Multiplexors could also be cascaded below the IP
driver if the device drivers were replaced by multiplexor drivers.

Figure 1 0-7: Internet Multiplexor After Connecting

r - 1 U 1 Setup and Supervisory ,
P

ser
1 Process 1 rocesses
I I
L - � - - - - - A - - - - - - - - - - -

Multiplexing

QUEUE Pair

. V
: fds :
· · · · · · ·1:. : /:.:b.' ' " " '

I I I
I I I

. � .v. i
: Upper :
� Multiplexor or �
: Module : . .

QUEUE Pair

Internet Protocol
Multiplexor Driver

QUEUE Pair A QUEUE Pair B

Net 1 Module Net 2 Module

Ethernet
Driver Driver

QUEUE Pair C

Driver

1 0-1 7

Multiplexor Construction Example

Streams A, B, and C are opened by the process, and modules are pushed as
needed. Two upper Streams are opened to the IP multiplexor. The rightmost
Stream represents multiple Streams, each connected to a process using the net
work. The Stream second from the right provides a direct path to the multi
plexor for supervisory functions. It is the control Stream, leading to a process
which sets up and supervises this configuration. It is always directly connected
to the IP driver. Although not shown, modules can be pushed on the control
Stream.

After the Streams are opened, the supervisory process typically transfers routing
information to the IP drivers (and any other multiplexors above the IP), and ini
tializes the links. As each link becomes operational, its Stream is connected
below the IP driver. If a more complex multiplexing configuration is required,
the IP multiplexor Stream with all its connected links can be connected below
another multiplexor driver.

Figure 10-7 shows that the file descriptors for the lower device driver Streams
are left dangling. The primary purpose in creating these Streams was to pro
vide parts for the multiplexor. Those not used for control and not required for
error recovery (by reconnecting them through an I_ UNLINK ioctl) have no
further function. These lower Streams can be closed to free the file descriptor
without any effect on the multiplexor.

1 0-1 8 Programmer's Gulde: STREAMS

Multiplexing Driver

This section contains an example of a multiplexing driver that implements an
N-to-1 configuration. This configuration might be used for terminal windows,
where each transmission to or from the terminal identifies the window. This
resembles a typical device driver, with two differences: the device handling
functions are performed by a separate driver, connected as a lower Stream, and
the device information (i.e., relevant user process) is contained in the input data
rather than in an interrupt call.

Each upper Stream is created by open(2). A single lower Stream is opened and
then it is linked by use of the multiplexing facility. This lower Stream might
connect to the tty driver. The implementation of this example is a foundation
for an M-to-N multiplexor.

As in the loop-around driver (in Chapter 9), flow control requires the use of
standard and special code, since physical connectivity among the Streams is bro
ken at the driver. Different approaches are used for flow control on the lower
Stream, for messages coming upstream from the device driver, and on the upper
Streams, for messages coming downstream from the user processes.

The multiplexor declarations are:

Multiplexing 1 0-1 9

Multlplexlng Driver

The four streamtab entries correspond to the upper read, upper write, lower
read, and lower write qinit structures. The multiplexing qinit structures replace
those in each (in this case there is only one) lower Stream head after the I_ LINK
has completed successfully. In a multiplexing configuration, the processing per
formed by the multiplexing driver can be partitioned between the upper and
lower queues. There must be an upper Stream write put procedure and lower

1 0-20 Programmer's Gulde: STREAMS

Mu ltiplexing Driver

Stream read put procedure. If the queue procedures of the opposite
upper/lower queue are not needed, the queue can be skipped over, and the
message put to the following queue.

In the example, the upper read-side procedures are not used. The lower Stream
read queue put procedure transfers the message directly to the read queue
upstream from the multiplexor. There is no lower write put procedure because
the upper write put procedure directly feeds the lower write queue downstream
from the multiplexor.

The driver uses a private data structure, mux. mux_mux[dev] points back to the
opened upper read queue. This is used to route messages coming upstream
from the driver to the appropriate upper queue. It is also used to find a free
major/minor device for a CLONEOPEN driver open case.

The upper queue open contains the canonical driver open code:

Multiplexing 1 0-21

Multiplexing Driver

muxopen checks for a clone or ordinary open call. It initializes qytr to point at
the mux _ mux[] structure.

The core multiplexor processing is the following: downstream data written to an
upper Stream is queued on the corresponding upper write message queue if the
lower Stream is flow controlled. This allows flow control to propagate towards
the Stream head for each upper Stream. A lower write service procedure,
rather than a write put procedure, is used so that flow control, coming up from
the driver below, may be handled.

On the lower read-side, data coming up the lower Stream are passed to the
lower read put procedure. The procedure routes the data to an upper Stream
based on the first byte of the message. This byte holds the minor device

1 0-22 Programmer's Gulde: STREAMS

Multiplexing Driver

number of an upper Stream. The put procedure handles flow control by testing
the upper Stream at the first upper read queue beyond the driver. That is, the
put procedure treats the Stream component above the driver as the next queue.

Upper Write Put Procedure

muxuwput, the upper queue write put procedure, traps ioctls, in particular
I LINK and I UNLINK: - -

Multip lexing

(continued on next page)

1 0-23

Multip lexing Driver

First, there is a check to enforce that the Stream associated with minor device 0
will be the single, controlling Stream. The ioctls are only accepted on this
Stream. As described previously, a controlling Stream is the one that issues the
I_LINK. Having a single control Stream is a recommended practice. I_LINK
and I_ UNLINK include a linkblk structure containing:

l_qtop

1 0-24

The upper write queue from which the ioctl is coming. It
should always equal q.

Programmer's Gulde: STREAMS

l_qbot

l index

Multiplexing Driver

The new lower write queue. It is the former Stream head write
queue. It is of most interest since that is where the multiplexor
gets and puts its data.

A unique (system wide) identifier for the link. It can be used
for routing or during selective unlinks. Since the example only
supports a single link, l_index is not used.

For !_LINK, l_qbot is saved in muxbot and a positive acknowledgment is gen
erated. From this point on, until an I_ UNLINK occurs, data from upper queues
will be routed through muxbot. Note that when an I_ LINK, is received, the
lower Stream has already been connected. This allows the driver to send mes
sages downstream to perform any initialization functions. Returning an
M_IOCNAK message (negative acknowledgment) in response to an I_ LINK will
cause the lower Stream to be disconnected.

The I_ UNLINK handling code nulls out muxbot and generates a positive ack
nowledgment. A negative acknowledgment should not be returned to an
I_ UNLINK. The Stream head assures that the lower Stream is connected to a
multiplexor before sending an I_ UNLINK M_IOCTL.

muxuwput handles M _FLUSH messages as a normal driver would:

Multiplexing 1 0-25

Multlplexlng Driver

M_DATA messages are not placed on the lower write message queue. They are
queued on the upper write message queue. When flow control subsides on the
lower Stream, the lower service procedure, muxlwsrv, is scheduled to start out
put. This is similar to starting output on a device driver.

1 0-26 Programmer's Gulde: STREAMS

Mult iplexing Dr iver

Upper Write Service Procedure

The following example shows the code for the upper multiplexor write service
procedure:

As long as there is a Stream still linked under the multiplexor and there are no
errors, the service procedure will take a message off the queue and send it
downstream, if flow control allows.

Multiplexing 1 0-27

Multiplexing Driver

Lower Write Service Procedure

muxlwsro, the lower (linked) queue write service procedure is scheduled as a
result of flow control subsiding downstream (it is back-enabled).

muxlwsro steps through all possible upper queues. If a queue is active and there
are messages on the queue, then its the upper write service procedure is
enabled via qenable().

Lower Read Put Procedure

The lower (linked) queue read put procedure is:

1 0-28 Programmer's Gulde: STREAMS

Multiplexing Driver

(continued on next page)

Multiplexing 1 0-29

Multiplexing Driver

muxlrput receives messages from the linked Stream. In this case, it is acting as a
Stream head. It handles M_FLUSH messages. Note the code is reversed from
that of a driver, handling M _FLUSH messages from upstream. There is no need
to flush the read queue because no data are ever placed on it.

muxlrput also handles M_ERROR and M_HANGUP messages. If one is
received, it locks-up the upper Streams by setting muxerr.

M_DATA messages are routed by looking at the first data byte of the message.
This byte contains the minor device of the upper Stream. Several sanity checks
are made: Is the device in range? Is the upper Stream open? Is the upper
Stream not full?

This multiplexor does not support flow control on the read-side. It is merely a
router. If everything checks out, the message is put to the proper upper queue.
Otherwise, the message is discarded.

The upper Stream close routine simply clears the mux entry so this queue will
no longer be found.

1 0-30 Programmer's Gulde: STREAMS

Multlplexlng Driver

Multiplexing 1 0-31

Persistent L inks

With I_ LINK and I_ UNLINK ioctls the file descriptor associated with the
Stream above the multiplexor used to set up the lower multiplexor connections
must remain open for the duration of the configuration. Closing the file
descriptor associated with the controlling Stream will dismantle the whole mul
tiplexing configuration. Some applications may not want to keep a process run
ning merely to hold the multiplexor configuration together. Therefore, "free
standing" links below a multiplexor are needed. A persistent link is such a link.
It is similar to a STREAMS multiplexor link, except that a process is not needed
to hold the links together. After the multiplexor has been set up, the process
may close all file descriptors and exit, and the multiplexor will remain intact.

Two ioctls, I_PLINK and l_PUNLINK, are used to create and remove persistent
links that are associated with the Stream above the multiplexor. close(2) and
I_ UNLINK are not able to disconnect the persistent links.

The format of I PLINK is:

ioctl (fdO , !_PLINK, fdl)

The first file descriptor, fdO, must reference the Stream connected to the multi
plexing driver and the second file descriptor, fd1, must reference the Stream to
be connected below the multiplexor. The persistent link can be created in the
following way:

Figure 10-8 shows how open(2) establishes a Stream between the device and the
Stream head.

1 0-32 Programmer's Gulde: STREAMS

Persistent Links

Figure 1 0-8: open() of MUXdrlver and Drlver1

_ _ _ _ _ _ _ _ .!1�!3P�«:_e _ _

Kernel Space

Driverl MUXdriver

The persistent link can still exist even if the file descriptor associated with the
upper Stream to the multiplexing driver is closed. The I_PLINK ioctl returns an
integer value, muxid, that can be used for dismantling the multiplexing
configuration. lf the process that created the persistent link still exists, it may
pass the mu:xid value to some other process to dismantle the link, if the disman
tling is desired, or it can leave the muxid value in a file so that other processes
may find it later. Figure 10-9 shows a multiplexor after I_PLINK.

Multlplexlng 1 0-33

Persistent Links

Figure 1 0-9: Multiplexor After l_PLINK

- - - - - - - - - - - - - - - - - -�- - - - - - - - - - - - �����- -

: fd 1 : fdO Kernel Space

MUX:driver

Persistent �
Link � -�---'-----,

Driverl

Several users can open the MUXdriver and send data to the Driverl since the
persistent link to the Driverl remains intact. This is shown in the following
figure.

1 0-34 Programmer's Gulde: STREAMS

Persistent Links

Figure 1 0-1 0: Other Users Opening a MUXdrlver

- - - - - - - - - -�-�� - - Y�-s�- -

MUXdriver

Persisten�
Link

��-�

Driverl

Kernel Space

The ioctl I_PUNLINK is used for dismantling the persistent link. Its format is:

ioctl (fdO , I_PUNLINK, muxid)

where the fdO is the file descriptor associated with Stream connected to the mul
tiplexing driver from above. The muxid is returned by the ioctl !_PLINK for the
Stream that was connected below the multiplexor. The I_PUNLINK removes
the persistent link between the multiplexor referenced by the fdO and the Stream
to the driver designated by the muxid. Each of the bottom persistent links can
be disconnected individually. An I_PUNLINK ioctl with the muxid value of
MUXID _ALL will remove all persistent links below the multiplexing driver
referenced by the fdO.

Multlplexlng 1 0-35

Persistent Links

The following will dismantle the previously given configuration:

The use of the ioctls I PLINK and I PUNLINK should not be intermixed with
the I_LINK and I_ UNLINK. Any attempt to unlink a regular link via the
l_PUNLINK or to unlink a persistent link via the I_ UNLINK ioctl will cause the
errno value of EINV AL to be returned.

Since multi-level multiplexing configurations are allowed in STREAMS, it is pos
sible to have a situation where persistent links exist below a multiplexor whose
Stream is connected to the above multiplexor by regular links. Oosing the file
descriptor associated with the controlling Stream will remove the regular link
but not the persistent links below it. On the other hand, regular links are
allowed to exist below a multiplexor whose Stream is connected to the above
multiplexor via persistent links. In this case, the regular links will be removed
if the persistent link above is removed and no other references to the lower
Streams exist.

The construction of cycles is not allowed when creating links. A cycle could be
constructed by creating a persistent link of multiplexor 2 below multiplexor 1
and then closing the controlling file descriptor associated with the multiplexor 2
and reopening it again and then linking the multiplexor 1 below the multiplexor
2. This is not allowed. The operating system prevents a multiplexor
configuration from containing a cycle to ensure that messages can not be routed
infinitely, thus creating an infinite loop or overflowing the kernel stack.

1 0-36 Programmer's Gulde: STREAMS

Design Gu ide l ines

The following lists general multiplexor design guidelines:

• The upper half of the multiplexor acts like the end of the upper Stream.

• The lower half of the multiplexor acts like the head of the lower Stream.

• Service procedures are used for flow control.

• Message routing is based on multiplexor specific criteria.

• When one Stream is being fed by many Streams, flow control may have to
take place. Then all feeding Streams on the other end of the multiplexor
will have to be enabled when the flow control is relieved.

• When one Stream is feeding many Streams, flow control may also have to
take place. Be careful not to starve other Streams when one becomes flow
controlled.

Multiplexing 1 0-37

I . :

1 1 STREAMS-Based Pi pes and
FI FOS

STR EAMS-based Pi pes and FI FOs
Creating and Opening Pipes and FI FOs
Accessing Pipes and F I FOs

• Reading from a Pipe or FIFO
• Writing to a Pipe or FIFO
• Closing a Pipe or FIFO

Flushing Pipes and FI FOs
Named Streams

• fattach
• fdetach
• isastream
• File Descriptor Passing
• Named Streams in A Remote Environment

Unique Connections

Table of Contents

1 1 - 1
1 1 - 1
1 1 -3
1 1 -4
1 1 -4
1 1 -5
1 1 -6
1 1 -7
1 1 -7
1 1 -8
1 1 -9
1 1 -9
1 1 -1 0
1 1 - 1 0

STREAMS-based Pipes and FIFOs

A pipe in the UNIX system is a mechanism that provides a communication path
between multiple processes. Prior to Release 4.0 UNIX System V had "standard"
pipes and named pipes (also called FIFOs). With standard pipes, one end was
opened for reading and the other end for writing, thus data flow was uni
directional. FIFOs had only one end and typically one process opened the file
for reading and another process opened the file for writing. Data written into
the FIFO by the writer could then be read by the reader.

To provide greater support and development flexibility for networked applica
tions, pipes and FIFOs have become STREAMS-based in UNIX System V
Release 4.0. The basjc interface remains the same but the underlying implemen
tation has changed. Pipes now provide a bi-directional mechanism for process
communication. When a pipe is created via the pipe(2) system call, two Streams
are opened and connected together, thus providing a full-duplex mechanism.
Data flow is on First-In-First-Out basis. Previously pipes were associated with
character devices and the creation of a pipe was limited to the capacity and
configuration of the device. STREAMS-based pipes and FIFOs are not attached
to STREAMS-based character devices. This eliminates configuration constraints
and limits the number of opened pipes to the number of file descriptors for that
process.

The remainder of this chapter uses the terms pipe and STREAM5-based pipe
interchangeably for a STREAMS-based pipe.

Creating and Opening Pipes and FIFOs

FIFOs are created via mknod(2) or mkfifo(3C). FIFOs behave like regular file
system nodes but are distinguished from other file system nodes by the p in the
first column when the ls -1 command is executed. Data written to the FIFO
or read from the FIFO flow up and down the Stream in STREAMS buffers.
Data written by one process can be read by another process.

FIFOs are opened in the same manner as other file system nodes via the open(2)
system call. Any data written to the FIFO can be read from the same file
descriptor in the First-In-First-Out manner. Modules can also be pushed on the
FIFO. See open(2) for the restrictions that apply when opening a FIFO.

STREAMS-Based Pipes and FIFOS 1 1 -1

STREAMS-based Pipes and FIFOs

A STREAMS-based pipe is created via the pipe(2) system call that returns two
file descriptors, fdlOJ and fd[1]. Both file descriptors are opened for reading and
writing. Data written to fd[OJ becomes data read from fd[1] and vice versa.

Each end of the pipe has knowledge of the other end through internal data
structures. Subsequent reads, writes, and closes are aware of if the other end of
the pipe is open or closed. When one end of the pipe is closed, the internal data
structures provide a way to access the Stream for the other end so that an
M _HANGUP message can be sent to its Stream head.

After successful creation of a STREAMS-based pipe, 0 is returned. If pipe(2) is
unable to create and open a STREAMS-based pipe, it will fail with errno set as
follows:

• ENOMEM - could not allocate two vnodes.

• ENFILE - file table is overflowed.

• EMFILE - can't allocate more file descriptors for the process.

• ENOSR - could not allocate resources for both Stream heads.

• EINTR - signal was caught while creating the Stream heads.

STREAMS modules can be added to a STREAMS-based pipe with the ioctl(2)
I_PUSH. A module can be pushed onto one or both ends of the pipe (see Fig
ure 1 1-1). However, a pipe maintains the concept of a midpoint so that if a
module is pushed onto one end of the pipe, that module cannot be popped from
the other end.

1 1 -2 Programmer's Gulde: STREAMS

----------------- STREAMS-based Pipes and FIFOs

Figure 1 1 ·1 : Pushing Modules on a STREAMS-based Pipe

Stream Head Stream Head Kernel

J _ _ _ _ _ _ , J _ _ _ _ _ _ ,

Accessing Pipes and FIFOs

STREAMS-based pipes and FIFOs can be accessed through the operating system
routines read(2), write(2), ioctl(2), close(2), putmsg(2), getmsg(2), and poll(2).
In case of FIFOs open(2) is also used.

STREAMS-Based Pipes and FIFOS 1 1 ·3

STREAMS-based Pipes and FIFOs

Reading from a Pipe or FIFO

The read(2) [or getmsg(2)] system call is used to read from a pipe or FIFO. A
user reads data from a Stream (not from a data buffer as was done prior to
Release 4.0). Data can be read from either end of a pipe.

On success, the read returns the number of bytes read and placed in the buffer.
When the end of the data is reached, the read returns 0.

When a user process attempts to read from an empty pipe (or FIFO), the follow
ing will happen:

• If one end of the pipe is closed, 0 is returned indicating the end of the file.

• If no process has the FIFO open for writing, read(2) returns 0 to indicate
the end of the file.

• If some process has the FIFO open for writing, or both ends of the pipe
are open, and 0 _ND ELA Y is set, read(2) returns 0.

• If some process has the FIFO open for writing, or both ends of the pipe
are open, and 0 _ NONBLOCK is set, read(2) returns -1 and set errno to
EAGAIN.

• If 0 _ NDELA Y and 0 _ NONBLOCK are not set, the read call will block
until data are written to the pipe, until one end of the pipe is closed, or
the FIFO is no longer open for writing.

Writing to a Pipe or FIFO

When a user process calls the write(2) system call, data are sent down the asso
ciated Stream. If the pipe or FIFO is empty (no modules pushed), data written
are placed on the read queue of the other Stream for STREAMS-based pipes,
and on the read queue of the same Stream for FIFOs. Since the size of a pipe is
the number of unread data bytes, the written data are reflected in the size of the
other end of the pipe.

Zero Length Writes
If a user process issues write(2) with 0 as the number of bytes to send down a
STREAMS-based pipe or FIFO, 0 is returned, and by default no message is sent
down the Stream. However, if a user requires that a 0-length message be sent
downstream, an ioctl call may be used to change this default behavior. The flag
SNDZERO supports this. If SNDZERO is set in the Stream head, write(2)

1 1 -4 Programmer's Gulde: STREAMS

STREAMS-based Pipes and FIFOs

requests of 0 bytes will generate a 0-length message and send the message
down the Stream. If SNDZERO is not set, no message is generated and 0 is
returned to the user.

To toggle the SNDZERO bit, the ioctl I_ SWROPT is used. If arg in the ioctl call
is set to SNDZERO and the SNDZERO bit is off, the bit is turned on. If arg is
set to 0 and the SNDZERO bit is on, the bit is turned off.

The ioctl I_ GWROPT is used to return the current write settings.

Atomic Writes

If multiple processes simultaneously write to the same pipe, data from one pro
cess can be interleaved with data from another process, if modules are pushed
on the pipe or the write is greater than PIPE_ BUF. The order of data written is
not necessarily the order of data read. To ensure that writes of less than
PIPE_ BUF bytes will not be interleaved with data written from other processes,
any modules pushed on the pipe should have a maximum packet size of at least
PIPE BUF.

PIPE_ BUF is an implementation specific constant that specifies the max
imum number of bytes that are atomic in a write to a pipe. When writing to
a pipe, write requests of PIPE BUF or less bytes will not be interleaved with
data from other processes doing writes on the same pipe. However, write
requests greater than PIPE BUF bytes may have data interleaved on arbi-
trary byte boundaries with writes by other processes whether or not the
O _ NONBLOCK or 0 _ NDELAY flag is set.

If the module packet size is at least the size of PIPE_BUF, the Stream head pack
ages the data in such a way that the first message is at least PIPE_ BUF bytes.
The remaining data may be packaged into smaller or larger blocks depending
on buffer availability. If the first module on the Stream cannot support a packet
of PIPE_BUF, atomic writes on the pipe cannot be guaranteed.

Closing a Pipe o r FIFO

The close(2) system call closes a pipe or FIFO and dismantles its associated
Streams. On the last close of one end of a pipe, an M _HANGUP message is
sent upstream to the other end of the pipe. Subsequent read(2) or getmsg(2)
calls on that Stream head will return the number of bytes read and zero when
there are no more data. Subsequent write(2) or putmsg(2} requests will fail
with errno set to ENXIO. If the pipe has been mounted via £attach() the pipe
must be unmounted prior to calling close, otherwise the Stream will not be

STREAMS-Based Pipes and FIFOS 1 1 -5

STREAMS-based Pipes and FIFOs

dismantled. If the other end of the pipe is mounted, the last close of the pipe
will force it to be unmounted.

Flushing Pipes and FIFOs

When the flush request is initiated from a user ioctl or from a flushq() routine,
the FLUSHR and/or FLUSHW bits of an M_FLUSH message will have to be
switched. The point of switching the bits is the point where the M _FLUSH mes
sage is passed from a write queue to a read queue. This point is also known as
the mid-point of the pipe.

The mid-point of a pipe is not always easily detectable, especially if there are
numerous modules pushed on either end of the pipe. In that case, there needs
to be a mechanism to intercept all messages passing through the Stream. If the
message is an M_FLUSH message and it is at the Streams mid-point, the flush
bits need to switched.

This bit switching is handled by the pipemod module. pipemod should be
pushed onto a pipe or FIFO where flushing of any kind will take place. The
pipemod module can be pushed on either end of the pipe. The only require
ment is that it is pushed onto an end that previously did not have modules on
it. That is, pipemod must be the first module pushed onto a pipe so that it is at
the mid-point of the pipe itself.

The pipemod module handles only M _FLUSH messages. All other messages
are passed on to the next module via the putnext() utility routine. If an
M_FLUSH message is passed to pipemod and the FLUSHR and FLUSHW bits
are set, the message is not processed but is passed to the next module via the
putnext() routine. If only the FLUSHR bit is set, the FLUSHR bit is turned off
and the FLUSHW bit is set. The message is then passed to the next module via
putnext Similarly, if the FLUSHW bit was the only bit set in the M _FLUSH
message, the FLUSHW bit is turned off and the FLUSHR bit is turned on. The
message is then passed to the next module on the Stream.

The pipemod module can be pushed on any Stream that desires the bit switch
ing. It must be pushed onto a pipe or FIFO if any form of flushing must take
place.

1 1 -6 Programmer's Guide: STREAMS

STREAMS-based Pipes and FIFOs

Named Streams

Some applications may want to associate a Stream or STREAMS-based pipe
with an existing node in the file system name space. For example, a server pro
cess may create a pipe, name one end of the pipe, and allow unrelated processes
to communicate with it over that named end.

fattach

A STREAMS file descriptor can be named by attaching that file descriptor to a
node in the file system name space. The routine £attach() [see also fattach(3C)]
is used to name a STREAMS file descriptor. Its format is:

int fattach (int fildes , char *path)

where fildes is an open file descriptor that refers to either a STREAMS-based
pipe or a STREAMS device driver (or a pseudo device driver), and path is an
existing node in the file system name space (for example, regular file, directory,
character special file, etc).

The path cannot have a Stream already attached to it. It cannot be a mount
point for a file system nor the root of a file system. A user must be an owner of
the path with write permission or a user with the appropriate privileges in order
to attach the file descriptor.

If the path is in use when the routine £attach() is executed, those processes
accessing the path will not be interrupted and any data associated with the path
before the call to the £attach() routine will continue to be accessible by those
processes.

After a Stream is named, all subsequent operations [for example, open(2)] on
the path will operate on the named Stream. Thus, it is possible that a user pro
cess has one file descriptor pointing to the data originally associated with the
path and another file descriptor pointing to a named Stream.

Once the Stream has been named, the stat(2) system call on path will show infor
mation for the Stream. If the named Stream is a pipe, the stat(2) information
will show that path is a pipe. If the Stream is a device driver or a pseudo device
driver, path appears as a device. The initial modes, permissions, and ownership
of the named Stream are taken from the attributes of the path. The user can
issue the system calls chmod(2) and chown(2) to alter the attributes of the

STREAMS-Based Pipes and FIFOS 1 1 -7

STREAMS-based Pipes and FIFOs

named Stream and not affect the original attributes of the path nor the original
attributes of the STREAMS file.

The size represented in the stat(2) information will reflect the number of unread
bytes of data currently at the Stream head. This size is not necessarily the
number of bytes written to the Stream.

A STREAMS-based file descriptor can be attached to many different paths at the
same time (i.e., a Stream can have many names attached to it). The modes,
ownership, and permissions of these paths may vary, but operations on any of
these paths will access the same Stream.

Named Streams can have modules pushed on them, be polled, be passed as file
descriptors, and be used for any other STREAMS operation.

fdetach

A named Stream can be disassociated from a file name with the £detach() rou
tine [see also fdetach(3C)] that has the following format:

int fdetach (char *path)

where path is the name of the previously named Stream. Only the owner of path
or the user with the appropriate privileges may disassociate the Stream from its
name. The Stream may be disassociated from its name while processes are
accessing it. If these processes have the named Stream open at the time of the
£detach() call, the processes will not get an error, and will continue to access the
Stream. However, after the disassociation, subsequent operations on path access
the underlying file rather than the named Stream.

If only one end of the pipe is named, the last close of the other end will cause
the named end to be automatically detached. If the named Stream is a device
and not a pipe, the last close will not cause the Stream to be detached.

If there is no named Stream or the user does not have access permissions on
path or on the named Stream, £detach() returns -1 with errno set to EINV AL.
Otherwise, £detach() returns 0 for success.

A Stream will remain attached with or without an active server process. If a
server aborted, the only way a named Stream is cleaned up is if the server exe
cuted a clean up routine that explicitly detached and closed down the Stream.

1 1 -8 Programmer's Gulde: STREAMS

STREAMS-based Pipes and FI FOs

If the named Stream is that of a pipe with only one end attached, clean up will
occur automatically. The named end of the pipe is forced to be detached when
the other end closes down. If there are no other references after the pipe is
detached, the Stream is deallocated and cleaned up. Thus, a forced detach of a
pipe end will occur when the server is aborted.

If the both ends of the pipe are named, the pipe remains attached even after all
processes have exited. In order for the pipe to become detached, a server pro
cess would have to explicitly invoke a program that executed the £detach() rou
tine.

To eliminate the need for the server process to invoke the program, the
fdetach(lM) command can be used. This command accepts a path name that is
a path to a named Stream. When the command is invoked, the Stream is
detached from the path. If the name was the only reference to the Stream, the
Stream is also deallocated.

A user invoking the fdetach(lM) command must be an owner of the named
Stream or a user with the appropriate permissions.

isastream

The function isastream() [see also isastream.(3C)] may be used to determine if a
file descriptor is associated with a STREAMS device. Its format is:

int isastream (int fildes) ;

where fildes refers to an open file. isastream() returns 1 if fildes represents a
STREAMS file, and 0 if not. On failure, isastream.0 returns -1 with errno set to
EBADF.

This function is useful for client processes communicating with a server process
over a named Stream to check whether the file has been overlaid by a Stream
before sending any data over the file.

File Descriptor Passing

Named Streams are useful for passing file descriptors between unrelated
processes. A user process can send a file descriptor to another process by
invoking the ioctl(2) I_ SEND FD on one end of a named Stream. This sends a
message containing a file pointer to the Stream head at the other end of the

STREAMS-Based Pipes and FIFOS 1 1 -9

STREAMS-based Pipes and FIFOs

pipe. Another process can retrieve that message containing the file pointer by
invoking the ioctl(2) I_ RECVFD on the other end of the pipe.

Named Streams in A Remote Environment

If a user on the server machine creates a pipe and mounts it over a file that is
part of an advertised resource, a user on the client machine (that has remotely
named the resource) may access the remote named Stream. A user on the client
machine is not allowed to pass file descriptors across the named Stream and
will get an error when the ioctl request is attempted. If a user on the client
machine creates a pipe and attempts to attach it to a file that is a remotely
named resource, the system call will fail.

The following three examples are given as illustrations:

Suppose the server advertised a resource /dev/foo, created a STREAMS-based
pipe, and attached one end of the pipe onto /dev/foo/spipe. All processes on the
server machine will be able to access the pipe when they open /dev/foo/spipe.
Now suppose that client XYZ mounts the advertised resource /dev/foo onto its
/mnt directory. All processes on client XYZ will be able to access the
STREAMS-based pipe when they open /mnt/spipe.

If the server advertised another resource /dev/fog and client XYZ mounts that
resource onto its /install directory and then attaches a STREAMS-based pipe
onto /install, the mount would fail with errno set to EBUSY, because /install is
already a mount point. If client XYZ attached a pipe onto /install/spipe, the
mount would also fail with errno set to EREMOTE, because the mount would
require crossing an RFS (Remote File System) mount point.

Suppose the server advertised its /usr/control directory and client XYZ mounts
that resource onto its /tmp directory. The server now creates a STREAMS-based
pipe and attaches one end over its /usr directory. When the server opens /usr it
will access the pipe. On the other hand, when the client opens /tmp it will
access what is in the server's /usr/control directory.

1 1 -1 0 Programmer's Gulde: STREAMS

STREAMS-based Pipes and FI FOs

Unique Connections

With named pipes, client processes may communicate with a server process via
a module called connld that enables a client process to gain a unique, non
multiplexed connection to a server. The connld module can be pushed onto the
named end of the pipe. If connld is pushed on the named end of the pipe and
that end is opened by a client, a new pipe will be created. One file descriptor
for the new pipe is passed back to a client (named Stream) as the file descriptor
from the open(2) system call and the other file descriptor is passed to the server.
The server and the client may now communicate through a new pipe.

Figure 1 1 -2: Server Sets Up a Pipe

/usr/toserv
server

fdO

Figure 11-2 illustrates a server process that has created a pipe and pushed the
connld module on the other end. The server then invokes the £attach() routine
to name the other end /usr/toserv.

STREAMS-Based Pipes and FIFOS 1 1 -1 1

STREAMS-based Pipes and FIFOs

Figure 1 1-3: Processes X and Y Open /usr/tosero

- --� - - -�- - - !�:� _ _ _ ffeQ _ _ _ _ _ _ _

When process X (procx) opens /usr/toserv, it gains a unique connection to the
server process that was at one end of the original STREAMS-based pipe. When
process Y (procy) does the same, it also gains a unique connection to the server.
As shown in Figure 11-3, the server process has access to three separate
STREAMS-based pipes via three file descriptors.

connld is a STREAMS-based module that has an open, close, and put procedure.
connld is opened when the module is pushed onto the pipe for the first time
and whenever the named end of the pipe is opened. The connld module distin
guishes between these two opens by use of the q_ptr field of its read queue. On
the first open, this field is set to 1 and the routine returns without further pro
cessing. On subsequent opens, the field is checked for 1 or 0. If the 1 is
present, the connld module creates a pipe and sends the file descriptor to a
client and a server. ' Making use of th

_
e q_ptr field el_im_inates the need to configure the connld

modu le at boot time. It also el iminates the need to manage the number of
times the module is either pushed and/or popped.

When the named Stream is opened, the open routine of connld is called. The
connld open will fail if:

1 1 -1 2 Programmer's Gulde: STREAMS

STREAMS-based Pipes and FIFOs

• The pipe ends can not be created.

• A file pointer and file descriptor can not be allocated.

• The Stream head can not stream the two pipe ends.

• strioctl() fails while sending the file descriptor to the server.

The open is not complete until the server process has received the file descriptor
using the ioctl I_RECVFD. The setting of the O_NDELAY or O_NONBLOCK
flag has no impact on the open.

The connld module does not process messages. All messages are passed to the
next object in the Stream. The read and write put routines call putnext() (see
Appendix C) to send the message up or down the Stream.

STREAMS-Based Pipes and FIFOS 1 1 -1 3

1 2 STR EAMS-Based Term inal
Subsystem

STREAMS-based Terminal Subsystem 1 2- 1
Line Discipl ine Module 1 2-3

• Defau lt Settings 1 2-3
• Data Structure 1 2-4
• Open and Close Routines 1 2-5
• Read-Side Processing 1 2-5
• Write-Side Processing 1 2-7
• EUC Handling in ldterm 1 2-8

Support of termiox(7) 1 2- 1 2
Hardware Emulation Modu le 1 2- 1 3

STREAMS-based Pseudo-Termi nal
Subsystem 1 2- 1 5
Line Discipl ine Module 1 2- 1 5
Pseudo-tty Emu lation Module - PTEM 1 2- 1 7

• Data Structure 1 2-1 9
• Open and Close Routines 1 2- 1 9

Remote Mode 1 2-20
Packet Mode 1 2-2 1
Pseudo-tty Drivers - ptm and pts 1 2-22

Table of Contents

• grantpt 1 2-25
• unlockpt 1 2-26
• ptsname 1 2-26

STREAMS-based Terminal Subsystem

STREAMS provides a uniform interface for implementing character 1/0 devices
and networking protocols in the kernel. UNIX System V Release 4.0 imple
ments the terminal subsystem in STREAMS. The STREAMS-based terminal sub
system (see Figure 12-1) provides many benefits:

• Reusable line discipline modules. The same module can be used in many
STREAMS where the configuration of these STREAMS may be different.

• Line discipline substitution. Although UNIX System V provides a stan
dard terminal line discipline module, another one conforming to the inter
face may be substituted. For example, a remote login feature may use the
terminal subsystem line discipline module to provide a terminal interface
to the user.

• Internationalization. The modularity and flexibility of the STREAMS
based terminal subsystem enables an easy implementation of a system
that supports multiple byte characters for internationalization. This
modularity also allows easy addition of new features to the terminal sub
system.

• Easy customizing. Users may customize their terminal subsystem environ
ment by adding and removing modules of their choice.

• The pseudo-terminal subsystem. The pseudo-terminal subsystem can be
easily supported (this is discussed in more detail later in this chapter).

• Merge with networking. By pushing a line discipline module on a net
work line, one can make the network look like a terminal line.

STREAMS-Based Terminal Subsystem 1 2·1

STREAMS-based Terminal Subsystem

Figure 1 2-1 : STREAMS-based Terminal Subsystem

downstream

1

User Process

Stream Head

Line
Discipline

TIY
Driver

User Space

Kernel Space

r
upstream

The initial setup of the STREAMS-based terminal subsystem is handled with the
ttymon(lM) command within the framework of the Service Access Facility or
the autopush feature. The autopush facility is discussed in Appendix E.

1 2-2 Programmer's Gulde: STREAMS

STREAMS-based Terminal Subsystem

The STREAMS-based terminal subsystem supports termio(7), the termios(2)
specification of the POSIX standard, multiple byte characters for internationali
zation, the interface to asynchronous hardware flow control [see termiox(7)],
and peripheral controllers for asynchronous terminals. XENIX® and BSD com
patibility can also be provided by pushing the ttcompat module. In order to
use shl with the STREAMS-based terminal subsystem, the sxt driver is imple
mented as a STREAMS-based driver. However, the sxt feature is being phased
out and users are encouraged to use the job control mechanism. Both shl and
job control should not be run simultaneously.

Line Discip l ine Modu le

A STREAMS line discipline module called ldterm [see ldterm(7)] is a key part of
the STREAMS-based terminal subsystem. Throughout this chapter, the terms
line discipline and ldterm are used interchangeably and refer to the STREAMS
version of the standard line discipline and not the traditional character version.
ldterm performs the standard terminal I/O processing which was traditionally
done through the linesw mechanism.

The termio and termios specifications describe four flags which are used to con
trol the terminal: c _iflag (defines input modes), c _oflag (defines output modes),
c _cflag (defines hardware control modes), and c _lflag (defines terminal functions
used by ldterm). In order to process these flags elsewhere (for example, in the
firmware or in another process), a mechanism is in place to tum on and off the
processing of these flags. When ldterm is pushed, it sends an M _ CTL message
downstream which asks the driver which flags the driver will process. The
driver sends back that message in response if it needs to change ldterm's
default processing. By default, ldterm assumes that it must process all flags
except c _cflag, unless it receives a message telling otherwise.

Default Settings

When ldterm is pushed on the Stream, the open routine initializes the settings
of the termio flags. The default settings are:

c _iflag = BRKINT I ICRNL I IXON I ISTRIP I IXANY
c _oflag = OPOST I ONLCR I TAB3
c_cflag = 0
c _lflag = ISIG I ICANON I ECHO I ECHOK

STREAMS-Based Terminal Subsystem 1 2-3

STREAMS-based Terminal Subsystem

In canonical mode (ICANON flag in c _lflag is turned on), read from the terminal
file descriptor is in message non-discard (RMSGN) mode [see streamio(7)] . This
implies that in canonical mode, read on the terminal file descriptor always
returns at most one line regardless how many characters have been requested.
In non-canonical mode, read is in byte-stream (RNORM) mode.

Data Structure

The ldterm module uses the following structure to maintain state information:

1 2-4 Programmer's Gulde: STREAMS

----------------- STREAMS-based Terminal Subsystem

Open and Close Routines

The open routine of the ldterm module allocates space for holding the tty struc
ture (see tty.h) by allocating a buffer from the STREAMS buffer pool. The
number of modules that can be pushed depends on the availability of buffers.
The open also sends an M _ SETOPTS message upstream to set the Stream head
high and low water marks to 300 and 200 respectively.

The ldterm module establishes a controlling tty for the line when an
M _ SETOPTS message (so _flags is set to SO _ISTIY) is sent upstream. The Stream
head allocates the controlling tty on the open, if one is not already allocated.

To maintain compatibility with existing applications that use the O_NDELAY
flag, the open routine sets the SO_ NDLEON flag on in the so _flags field of the
stroptions structure in the M _ SETOPTS message.

The open routine fails if there are no buffers available (cannot allocate the tty
structure) or when an interrupt occurs while sleeping for a buffer to become
available.

The close routine frees all the outstanding buffers allocated by this Stream. It
also sends an M _ SETOPTS message to the Stream head to undo the changes
made by the open routine. The Id term module also sends M _ST ART and
M_STARTI messages downstream to undo the effect of any previous M_STOP
and M _ STOPI messages.

Read-Side Processing

The ldterm module's read-side processing has put and service procedures.
High and low water marks for the read queue are 128 and 64 respectively.

ldterm can send the following messages upstream:

M_DATA, M_BREAK, M_PCSIG, M_SIG, M_FLUSH, M_ERROR, M_IOCACK,
M IOCNAK, M HANGUP, M CTL, M SETOPTS, M COPYOUT, and
M=COPYIN (see Appendix B).

- - -

The ldterm module's read-side processes M_BREAK, M_DATA, M_CTL,
M_FLUSH, M_HANGUP, and M_IOCACK messages. All other messages are
sent upstream unchanged.

STREAMS-Based Terminal Subsystem 1 2-5

STREAMS-based Terminal Subsystem

The put procedure scans the message for flow control characters (IXON), signal
generating characters, and after (possible) transformation of the message, queues
the message for the service procedure. Echoing is handled completely by the
service procedure.

In canonical mode if the I CANON flag is on in c _lflag, canonical processing is
performed. If the !CANON flag is off, non-canonical processing is performed
[see termio(7) for more details]. Handling of VMIN/VTIME in the STREAMS
environment is somewhat complicated, because read needs to activate a timer in
the ldterm module in some cases; hence, read notification becomes necessary.
When a user issues an ioctl to put ldterm in non-canonical mode, the ldterm
module sends an M _ SETOPTS message to the Stream head to register read
notification. Further reads on the terminal file descriptor will cause the Stream
head to issue an M _READ message downstream and data will be sent upstream
in response to the M _READ message. With read notification, buffering of raw
data is performed by ldterm. It is possible to canonize the raw data, when the
user has switched from raw to canonical mode. However, the reverse is not
possible.

To summarize, in non-canonical mode, the ldterm module buffers all data until
a request for the data arrives in the form of an M _READ message. The number
of bytes sent upstream will be the argument of the M _READ message.

The service procedure of ldterm handles STREAMS related flow control. Since
the read-side high and low water marks are 128 and 64 respectively, placing
more than 128 characters on the ldterm's read queue will cause the QFULL flag
be turned on indicating that the module below should not send more data
upstream.

Input flow control is regulated by the line discipline module by generating
M _START! and M _ STOPI high priority messages. When sent downstream,
receiving drivers or modules take appropriate action to regulate the sending of
data upstream. Output flow control is activated when ldterm receives flow con
trol characters in its data stream. The ldterm module then sets an internal flag
indicating that output processing is to be restarted/stopped and sends an
M _ST ART /M _STOP message downstream.

1 2-6 Programmer's Gulde: STREAMS

---------------- STREAMS-based Terminal Subsystem

Write-Side Processing

Write-side processing of the ldterm module is performed by the write-side put
and service procedures.

The ldterm module supports the following ioctls:

TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA,
TCGETS, TCXONC, TCFLSH, TCSBRK, TIOCSWINSZ, TIOCGWINSZ, and
JWINSIZE.

All ioctls not recognized by the ldterm module are passed downstream to the
neighboring module or driver. BSD functionality is turned off by IEXTEN [see
termio(7) for more details] .

The following messages can be received on the write-side:

M DATA, M DELAY, M BREAK, M FLUSH, M STOP, M START, M STOPI,
M=STARTI, M_READ, M)OCDATA,

-
M_CTL, and M_IocfL.

-

On the write-side, the ldterm module processes M_FLUSH, M_DATA,
M _IOCTL, and M _READ messages, and all other message are passed down
stream unchanged.

An M _ CTL message is generated by ldterm as a query to the driver for an intel
ligent peripheral and to decide on the functional split for termio processing. If
all or part of termio processing is done by the intelligent peripheral, ldterm can
tum off this processing to avoid computational overhead. This is done by send
ing an appropriate response to the M _ CTL message, as follows: [see also
ldterm(7)] .

• If all of the termio processing is done by the peripheral hardware, the
driver sends an M _ CTL message back to ldterm with ioc _ cmd of the struc
ture iocblk set to MC NO CANON. If ldterm is to handle all termio
processing, the driver

-
sends an M_CTL message with ioc_cmd set to

MC DO CANON. Default is MC DO CANON. - - - -
• If the peripheral hardware handles only part of the termio processing, it

informs ldterm in the following way:

STREAMS-Based Terminal Subsystem 1 2-7

STREAMS-based Terminal Subsystem

The driver for the peripheral device allocates an M_DATA message large
enough to hold a termios structure. The driver then turns on those
c _iflag, c _oflag, and c _lflag fields of the termios structure that are processed
on the peripheral device by ORing the flag values. The M_DATA mes
sage is then attached to the b _cont field of the M _ CfL message it received.
The message is sent back to Id term with ioc _ cmd in the data buffer of the
M_CTL message set to MC_PART_CANON.

The line discipline module does not check if write-side flow control is in effect
before forwarding data downstream. It expects the downstream module or
driver to queue the messages on its queue until flow control is lifted.

EUC Handl ing in ldterm

The idea of letting post-processing (the o _flags) happen off the host processor is
not recommended unless the board software is prepared to deal with interna
tional (EUC) character sets properly. The reason for this is that post-processing
must take the EUC information into account. ldterm knows about the screen
width of characters (that is, how many columns are taken by characters from
each given code set on the current physical display) and it takes this width into
account when calculating tab expansions. When using multi-byte characters or
multi-column characters ldterm automatically handles tab expansion (when
TAB3 is set) and does not leave this handling to a lower module or driver.

As an example, consider the 3B2 PORTS board that has a processor and runs
firmware on the board that can handle output post-processing. However, the
firmware on the PORTS board has no knowledge of EUC unless one can change
the firmware. Therefore, with some EUC code sets, particularly those where
number of bytes in a character is not equivalent to the width of the character on
the screen (for example, 3 byte codes that take only 2 screen columns), the
PORTS board's firmware miscalculates the number of spaces required to expand
the tab. Hence, if the board is allowed to handle tab expansion, it may get the
expansion wrong in some cases.

By default multi-byte handling by ldterm is turned off. When ldterm receives
an EUC_WSET ioctl call, it turns multi-byte processing on, if it is essential to
properly handle the indicated code set. Thus, if one is using single byte 8-bit
codes and has no special multi-column requirements, the special multi-column
processing is not used at all. This means that multi-byte processing does not
reduce the processing speed or efficiency of ldterm unless it is actually used.

1 2-8 Programmer's Gulde: STREAMS

----------------- STREAMS-based Terminal Subsystem

The following describes how the EUC handling in ldterm works:

First, the multi-byte and multi-column character handling is only enabled when
the EUC_W5ET ioctl indicates that one of the following conditions is met:

• Code set consists of more than one byte (including the 552 and/ or 553) of
characters, or

• Code set requires more than one column to display on the current device,
as indicated in the EUC W5ET structure.

Assuming that one or more of the above conditions, EUC handling is enabled.
At this point, a parallel array (see Id term_ mod structure) used for other infor
mation, is allocated and a pointer to it is stored ih t_eucp_mp. The parallel array
which it holds is pointed to by t_eucp. The t_codeset field holds the flag that
indicates which of the code sets is currently being processed on the read-side.
When a byte with the high bit arrives, it is checked to see if it is 552 or 553. If
so, it belongs to code set 2 or 3. Otherwise, it is a byte that comes from code set
1. Once the extended code set flag has been set, the input processor retrieves
the subsequent bytes, as they arrive, to build one multi-byte character. The
counter field t _ eucleft tells the input processor how many bytes remain to be
read for the current character. The parallel array t _ eucp holds for each logical
character in the canonical buffer its display width. During erase processing,
positions in the parallel array are consulted to figure out how many backspaces
need to be sent to erase each logical character. (In canonical mode, one back
space of input erases one logical character, no matter how many bytes or
columns that character consumes.) This greatly simplifies erase processing for
EUC.

The t _ maxeuc field holds the maximum length, in memory bytes, of the EUC
character mapping currently in use. The eucwioc field is a sub-structure that
holds information about each extended code set.

The t_eucign field aids in output post-processing (tab expansion). When charac
ters are output, ldterm keeps a column to indicate what the current cursor
column is supposed to be. When it sends the first byte of an extended charac
ter, it adds the number of columns required for that character to the output
column. It then subtracts one from the total width in memory bytes of that
character and stores the result in t _eucign. This field tells ldterm how many
subsequent bytes to ignore for the purposes of column calculation. (ldterm cal
culates the appropriate number of columns when it sees the first byte of the
character.)

STREAMS-Based Terminal Subsystem 1 2-9

STREAMS-based Terminal Subsystem

The field t eucwarn is a counter for occurrences of bad extended characters. It is
mostly useful for debugging. After receiving a certain number of illegal EUC
characters (perhaps because of some problem on the line or with declared
values), a warning is given on the system console.

There are two relevant files for handling multi-byte characters: euc.h and
eucioctl.h. The euciocU.h contains the structure that is passed with EUC _ WSET
and EUC _ WGET calls. The normal way to use this structure is to get
CSWIDTH (see note below) from the locale via a mechanism such as getwidth or
setlocale and then copy the values into the structure in euciocU.h, and send the
structure via an I SlR ioctl call. The EUC WSET call informs the ldterm - -
module about the number of bytes in extended characters and how many
columns the extended characters from each set consume on the screen. This
allows ldterm to treat multi-byte characters as single entities for the purpose of
erase processing and to correctly calculate tab expansions for multi-byte charac
ters.

.

• LC CTYPE (instead of CSWIDTH) should be used in the environ
_
ment in . UNTX System V Release 4.0 systems. See chrtbl(1 M) for more information .

The file euc.h has the structure with fields for EUC width, screen width, and
wide character width. The following functions are used to set and get EUC
widths (these functions assume the environment where the eucwidth t structure
is needed and available) :

-

1 2-1 0 Programmer's Gulde: STREAMS

STREAMS-based Terminal Subsystem

STREAMS-Based Terminal Subsystem 1 2-1 1

STREAMS-based Terminal Subsystem

The brief discussion of multiple byte character handling by the ldterm module
was provided here for the those interested in internationalization applications in
UNIX System V. More detailed descriptions may be obtained from product
related documents, for example UNIX® System V Multi-National Language Sup
plement Release 3.2 Product Overview. This book (select code is 320-093) is avail
able from AT&T Customer Information Center. To order this or other UNIX
System V books, call one of the following numbers: 1-800-432-6600 in the con
tinental U.S., 1-800-256-1242 outside the continental U.S., or 317-256-1242 outside
the U.S.

Support of termiox(7)

UNIX System V Release 4.0 includes the extended general terminal interface [see
termiox(7)] that supplements the termio(7) general terminal interface by adding
for asynchronous hardware flow control, isochronous flow control and clock
modes, and local implementations of additional asynchronous features. ter
miox(7) is handled by hardware drivers if the board (e.g., EPORTS) supports it.

Hardware flow control supplements the termio(7) IXON, IXOFF, and IXANY
character flow control. The termiox(7) interface allows for both unidirectional
and bidirectional hardware flow control. Isochronous communication is a varia
tion of asynchronous communication where two communicating devices provide
transmit and/ or receive clock to each other. Incoming clock signals can be
taken from the baud rate generator on the local isochronous port controller.
Outgoing signals are sent on the receive and transmit baud rate generator on
the local isochronous port controller.

Terminal parameters are specified in the termiox structure that is defined in the
termiox.h.

1 2-1 2 Programmer's Gulde: STREAMS

STREAMS-based Terminal Subsystem

Hardware Emulation Module

If a Stream supports a terminal interface, a driver or module that understands
all ioctls to support terminal semantics (specified by termio and termios) is
needed. If there is no hardware driver that understands all ioctl commands
downstream from the ldterm module, a hardware emulation module must be
placed downstream from the line discipline module. The function of the
hardware emulation module is to understand and acknowledge the ioctls that
may be sent to the process at the Stream head and to mediate the passage of
control information downstream. The combination of the line discipline module
and the hardware emulation module behaves as if there were an actual terminal
on that Stream.

The hardware emulation module is necessary whenever there is no tty driver at
the end of the Stream. For example, it is necessary in a pseudo-tty situation
where there is process to process communication on one system (this is dis
cussed later in this chapter) and in a network situation where a termio interface
is expected (e.g., remote login) but there is no tty driver on the Stream.

Most of the actions taken by the hardware emulation module are the same
regardless of the underlying architecture. However, there are some actions that
are different depending on whether the communication is local or remote and
whether the underlying transport protocol is used to support the remote con
nection. For example, NTfY is a hardware emulation module supported by
AT&T in its Starlan® networking environment. This hardware emulation
module behaves in a way understood by the URP protocol driver that exists
below NTIY. On receipt of a TCSBRK ioctl, NTfY sends an M_BREAK mes
sage downstream. When the baud rate is 0, the hardware emulation module
sends a TPI message requesting a disconnect. These actions are valid for a net
work situation but may not make sense in other environments when there is no
module/ driver below to understand the TPI messages or handle M _BREAK
messages.

Each hardware emulation module has an open, close, read queue put procedure,
and write queue put procedure.

The hardware emulation module does the following:

• Processes, if appropriate, and acknowledges receipt of the following ioctls
on its write queue by sending an M _IOCACK message back upstream:
TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA,
TCGETS, and TCSBRK.

STREAMS-Based Terminal Subsystem 1 2-1 3

STREAMS-based Terminal Subsystem

• Acknowledges the Extended UNIX Code (EUC) ioctls.

• If the environment supports windowing, it acknowledges the windowing
ioctls TIOCSWINSZ, TIOCGWINSZ, and JWINSIZE. If the environment
does not support windowing, an M_IOCNAK message is sent upstream.

• If any other ioctls are received on its write queue, it sends an M_IOCNAK
message upstream.

• When the hardware emulation module receives an M_IOCTL message of
type TCSBRK on its write queue, it sends an M_IOCACK message
upstream and the appropriate message downstream. For example, an
M _BREAK message could be sent downstream.

• When the hardware emulation module receives an M_IOCTL message on
its write queue to set the baud rate to 0 (TCSETAW with CBAUD set to
BO), it sends an M_IOCACK message upstream and an appropriate mes
sage downstream; for networking situations this will probably be an
M _PROTO message which is a TPI T _DISCON_ REQ message requesting
the transport provider to disconnect.

• All other messages (M_DATA, etc.) not mentioned here are passed to the
next module or driver in the Stream.

The hardware emulation module processes messages in a way consistent with
the driver that exists below.

1 2-1 4 Programmer's Gulde: STREAMS

STREAMS-based Pseudo-Terminal Subsystem

The STREAMS-based pseudo-terminal subsystem provides the user with an
interface that is identical to the S1REAMS-based terminal subsystem described
earlier in this chapter. The pseudo-terminal subsystem (pseudo-tty) supports a
pair of STREAMS-based devices called the master device and slave device. The
slave device provides processes with an interface that is identical to the terminal
interface. However, where all devices, which provide the terminal interface,
have some kind of hardware device behind them, the slave device has another
process manipulating it through the master half of the pseudo terminal. Any
thing written on the master device is given to the slave as an input and anything
written on the slave device is presented as an input on the master side.

Figure 12-2 illustrates the architecture of the STREAMS-based pseudo-terminal
subsystem. The master driver called ptm is accessed through the done driver
[see clone(7)] and is the controlling part of the system. The slave driver called
pts works with the line discipline module and the hardware emulation module
to provide a terminal interface to the user process. An optional packetizing
module called pckt is also provided. It can be pushed on the master side to
support packet mode (this is discussed later).

The number of pseudo-tty devices that can be installed on a system is depen
dent on available memory.

Line Discip l ine Modu le

In the pseudo-tty subsystem, the line discipline module is pushed on the slave
side to present the user with the terminal interface.

ldterm may turn off the processing of the c_iflag, c_ofl.ag, and c_lfl.ag fields to
allow processing to take place elsewhere. The ldterm module may also tum off
all canonical processing when it receives an M _ CTL message with the
MC_NO_CANON command in order to support remote mode (this is discussed
later). Although ldterm passes through messages without processing them, the
appropriate flags are set when a "get" ioctl, such as TCGETA or TCGETS, is
issued to indicate that canonical processing is being performed.

STREAMS-Based Terminal Subsystem 1 2-1 5

STREAMS-based Pseudo-Terminal Subsystem

Figure 1 2-2: Pseudo-tty Subsystem Architecture

1 2-1 6

Client
Process

Stream
Head

Line
Discipline

Hardware
Emulation

Module

Slave
PTS

Stream
Head

; - - - - - ,
I PCKT I
I I
1 Module 1
L - - - _ _ .J

Master
PTM

User

Kernel

Programmer's Gulde: STREAMS

STREAMS-based Pseudo-Terminal Subsystem

Pseudo-tty Emulation Modu le - PTEM

Since the pseudo-tty subsystem has no hardware driver downstream from the
ldterm module to process the terminal ioctl calls, another module that under
stands the ioctl commands is placed downstream from the ldterm. This
module, known as ptem, processes all of the terminal ioctl commands and
mediates the passage of control information downstream.

ldterm and ptem together behave like a real terminal. Since there is no real ter
minal or modem in the pseudo-tty subsystem, some of the ioctl commands are
ignored and cause only an acknowledgement of the command. The ptem
module keeps track of the terminal parameters set by the various "set" com
mands such as TCSETA or TCSETAW but does not usually perform any action.
For example, if one of the "set" ioctls is called, none of the bits in the c_cflag
field of termio has any effect on the pseudo-terminal except if the baud rate is
set to 0. When setting the baud rate to 0, it has the effect of hanging up the
pseudo-terminal.

The pseudo-terminal has no concept of parity so none of the flags in the c _iflag
that control the processing of parity errors have any effect. The delays specified
in the c_oflag field are not also supported.

The ptem module does the following:

• Processes, if appropriate, and acknowledges receipt of the following ioctls
on its write queue by sending an M_IOCACK message back upstream:

TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA,
TCGETS, and TCSBRK.

• Keeps track of the window size; information needed for the
TIOCSWINSZ, TIOCGWINSZ, and JWINSIZE ioctl commands.

• When it receives any other ioctl on its write queue, it sends an
M _IOCNAK message upstream.

• It passes downstream the following ioctls after processing them:

TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCSBRK,
and TIOCSWINSZ.

STREAMS-Based Terminal Subsystem 1 2-1 7

STREAMS-based Pseudo-Terminal Subsystem

• ptem frees any M_IOCNAK messages it receives on its read queue in case
the pckt module (pckt is described later) is not on the pseudo terminal
subsystem and the above ioctls get to the master's Stream head which
would then send an M_IOCNAK message.

• In its open routine, the ptem module sends an M _ SETOPTS message
upstream requesting allocation of a controlling tty.

• When the ptem module receives an M_IOCTL message of type TCSBRK
on its read queue, it sends an M_IOCACK message downstream and an
M _BREAK message upstream.

• When it receives an ioctl message on its write queue to set the baud rate
to 0 (TCSETAW with CBAUD set to BO), it sends an M_IOCACK message
upstream and a 0-length message downstream.

• When it receives an M _IOCTL of type TIOCSIGNAL on its read queue, it
sends an M_IOCACK downstream and an M_PCSIG upstream where the
signal number is the same as in the M_IOCTL message.

• When the ptem module receives an M_IOCTL of type TIOCREMOTE on
its read queue, it sends an M _IOCACK message downstream and the
appropriate M _ CTL message upstream to enable/ disable canonical pro
cessing.

• When it receives an M _DELAY message on its read or write queue, it dis
cards the message and does not act on it.

• When it receives an M _IOCTL message with type JWINSIZE on its write
queue and if the values in the jwinsize structure of ptem are not zero, it
sends an M_IOCACK message upstream with the jwinsize structure. If
the values are zero, it sends an M_IOCNAK message upstream.

• When it receives an M_IOCTL message of type TIOCGWINSZ on its write
queue and if the values in the winsize structure are not zero, it sends an
M_IOCACK message upstream with the winsize structure. If the values
are zero, it sends an M_IOCNAK message upstream. It also saves the
information passed to it in the winsize structure and sends a STREAMS
signal message for signal SIGWINCH upstream to the slave process if the
size changed.

1 2-1 8 Programmer's Gulde: STREAMS

STREAMS-based Pseudo-Terminal Subsystem

• When the ptem module receives an M_IOCTL message with type
TIOCGWINSZ on its read queue and if the values in the winsize structure
are not zero, it sends an M_IOCACK message downstream with the win
size structure. If the values are zero, it sends an M _IOCNAK message
downstream. It also saves the information passed to it in the winsize
structure and sends a S1REAMS signal message for signal SIGWINCH
upstream to the slave process if the size changed.

• All other messages not mentioned above are passed to the next module or
driver.

Data Structure

Each instantiation of the ptem module is associated with a local area. These
data are held in a structure called ptem that has the following format:

When the ptem module is pushed onto the slave side Stream, a search of the
ptem structure is made for a free entry (state is not set to !NUSE). The c _cflags
of the termio structure and the windowing variables are stored in cflags and wsz
respectively. The dack ytr is a pointer to a message block used to send a 0-
length message whenever a hang-up occurs on the slave side.

Open and Close Routines

In the open routine of ptem a S1REAMS message block is allocated for a 0-
length message for delivering a hang-up message; this allocation of a buffer is
done before it is needed to ensure that a buffer is available. An M_SETOPTS
message is sent upstream to set the read-side Stream head queues, to assign

STREAMS-Based Terminal Subsystem 1 2-1 9

STREAMS-based Pseudo-Terminal Subsystem

high and low water marks (512 and 256 respectively), and to establish a control
ling terminal.

The default values B300, CS8, CREAD, and HUPCL are assigned to cflags, and
INUSE to the state field.

The open routine fails if:

• No free entries are found when the ptem structure is searched.

• sfl.ag is not set to MODOPEN.

• A 0-length message can not be allocated (no buffer is available).

• A stroptions structure can not be allocated.

The close routine is called on the last close of the slave side Stream. Pointers to
read and write queue are cleared and the buffer for the 0-length message is
freed.

Remote Mode

A feature known as remote mode is available with the pseudo-tty subsystem.
This feature is used for applications that perform the canonical function nor
mally done by the ldterm module and tty driver. The remote mode allows
applications on the master side to tum off the canonical processing. An ioctl
TIOCREMOTE with a nonzero parameter [ioctl (fd, TIOCREMOTE , 1)] is
issued on the master side to enter the remote mode. When this occurs, an
M _ CTL message with the command MC_ NO_ CANON is sent to the ldterm
module indicating that data should be passed when received on the read-side
and no canonical processing is to take place. The remote mode may be disabled
by ioctl (fd, TIOCREMOTE , 0) .

1 2-20 Programmer's Gulde: STREAMS

STREAMS-based Pseudo-Terminal Subsystem

Packet Mode

The STREAMS-based pseudo-terminal subsystem also supports a feature called
packet mode. This is used to inform the process on the master side when state
changes have occurred in the pseudo-tty. Packet mode is enabled by pushing
the pckt module on the master side. Data written on the master side is pro
cessed normally. When data are written on the slave side or when other mes
sages are encountered by the pckt module, a header is added to the message so
it can be subsequently retrieved by the master side with a getmsg operation.

The pckt module does the following:

• When a message is passed to this module on its write queue, the module
does no processing and passes the message to the next module or driver.

• The pckt module creates an M_PROTO message when one of the follow
ing messages is passed to it:

M DATA, M IOCTL, M PROTO/M PCPROTO, M FLUSH,
M=START/M_STOP, M�TARTI/M.)TOPI, and M=READ.

All other messages are passed through. The M _PROTO message is passed
upstream and retrieved when the user issues getmsg(2).

• If the message is an M _FLUSH message, pckt does the following:

If the flag is FLUSHW, it is changed to FLUSHR (because FLUSHR was
the original flag before the pts driver changed it), packetized into an
M_PROTO message, and passed upstream. To prevent the Stream head's
read queue from being flushed, the original M _FLUSH message must not
be passed upstream.

If the flag is FLUSHR, it is changed to FLUSHW, packetized into an
M_PROTO message, and passed upstream. In order to flush of the write
queues properly, an M _FLUSH message with the FLUSHW flag set is also
sent upstream.

If the flag is FLUSHRW, the message with both flags set is packetized and
passed upstream. An M _FLUSH message with the FLUSHW flag set is
also sent upstream.

STREAMS-Based Terminal Subsystem 1 2-21

STREAMS-based Pseudo-Terminal Subsystem

Pseudo-tty Drivers - ptm and pts

In order to use the pseudo-tty subsystem, a node for the master side driver
I dev/ptmx and N number of slave drivers (N is determined at installation time)
must be installed. The names of the slave devices are /dev/pts/M where M
has the values 0 through N-1 . A user accesses a pseudo-tty device through the
master device (called ptm) that in turn is accessed through the clone driver [see
clone(7)] . The master device is set up as a clone device where its major device
number is the major for the clone device and its minor device number is the
major for the ptm driver.

The master pseudo driver is opened via the open(2) system call with I dev I ptmx
as the device to be opened. The clone open finds the next available minor dev
ice for that major device; a master device is available only if it and its
corresponding slave device are not already open. There are no nodes in the file
system for master devices.

When the master device is opened, the corresponding slave device is automati
cally locked out. No user may open that slave device until it is unlocked. A
user may invoke a function grantpt that will change the owner of the slave dev
ice to that of the user who is running this process, change the group id to tty,
and change the mode of the device to 0620. Once the permissions have been
changed, the device may be unlocked by the user. Only the owner or super
user can access the slave device. The user must then invoke the unlockpt func
tion to unlock the slave device. Before opening the slave device, the user must
call the ptsname function to obtain the name of the slave device. The functions
grantpt, unlockpt, and ptsname are called with the file descriptor of the master
device. The user may then invoke the open system call with the name that was
returned by the ptsname function to open the slave device.

The following example shows how a user may invoke the pseudo-tty subsystem:

1 2-22 Programmer's Gulde: STREAMS

STREAMS-based Pseudo-Terminal Subsystem

Unrelated processes may open the pseudo device. The initial user may pass the
master file descriptor using a STREAMS-based pipe or a slave name to another
process to enable it to open the slave. After the slave device is open, the owner
is free to change the permissions. ' Certain programs such as write and �all are set group-id (setgid) to tty and

are also able to access the slave device . .
After both the master and slave have been opened, the user has two file descrip
tors which provide full-duplex communication using two Streams. The two
Streams are automatically connected. The user may then push modules onto
either side of the Stream. The user also needs to push the ptem and ldterm
modules onto the slave side of the pseudo-terminal subsystem to get terminal
semantics.

The master and slave drivers pass all STREAMS messages to their adjacent
queues. Only the M _FLUSH needs some processing. Because the read queue of
one side is connected to the write queue of the other, the FLUSHR flag is
changed to FLUSHW flag and vice versa.

When the master device is closed, an M _HANGUP message is sent to the slave
device which will render the device unusable. The process on the slave side
gets the errno ENXIO when attempting to write on that Stream but it will be
able to read any data remaining on the Stream head read queue. When all the
data have been read, read returns 0 indicating that the Stream can no longer be
used.

STREAMS-Based Terminal Subsystem 1 2-23

STREAMS-based Pseudo-Terminal Subsystem

On the last close of the slave device, a 0-length message is sent to the master dev
ice. When the application on the master side issues a read or getmsg and 0 is
returned, the user of the master device decides whether to issue a close that dis
mantles the pseudo-terminal subsystem. If the master device is not closed, the
pseudo-tty subsystem will be available to another user to open the slave device.

Since 0-length messages are used to indicate that the process on the slave side
has closed and should be interpreted that way by the process on the master
side, applications on the slave side should not write 0-length messages. If that
occurs, the write returns 0, and the 0-length message is discarded by the ptem
module.

The standard STREAMS system calls can access the pseudo-tty devices. The
slave devices support the 0 _ND ELA Y and 0 _ NONBLOCK flags. Since the mas
ter side does not act like the terminal, if 0 _NO NB LOCK or 0 _ND ELA Y is set,
read on the master side returns -1 with errno set to EAGAIN if no data are
available, and write returns -1 with errno set to EAGAIN if there is internal flow
control.

The master driver supports the ISPTM and UNLKPT ioctls that are used by the
functions grantpt, unlockpt, and ptsname [see grantpt(3C), unlockpt(3C),
ptsname(3C)] . The ioctl ISPTM determines whether the file descriptor is that of
an open master device. On success, it returns the major/minor number (type
dev _ t) of the master device which can be used to determine the name of the
corresponding slave device. The ioctl UNLKPT unlocks the master and slave dev
ices. It returns 0 on success. On failure, the errno is set to EINV AL indicating
that the master device is not open.

The format of these commands is:

int ioct l (fd, command, arg)
int fd, command, arg;

where command is either ISPTM or UNLKPT and arg is 0. On failure, -1 is
returned.

When data are written to the master side, the entire block of data written is
treated as a single line. The slave side process reading the terminal receives the
entire block of data. Data are not input edited by the ldterm module regardless
of the terminal mode. The master side application is responsible for detecting
an interrupt character and sending an interrupt signal SIGINT to the process in
the slave side. This can be done as follows:

ioct l (fd, TIOCSIGNAL , S I GINT)

1 2-24 Programmer's Gulde: STREAMS

STREAMS-based Pseudo-Terminal Subsystem

where SIGINT is defined in the file <signal.h>. When a process on the master
side issues this ioctl, the argument is the number of the signal that should be
sent. The specified signal is then sent to the process group on the slave side.

To summarize, the master driver and slave driver have the following characteris
tics:

• Each master driver has one-to-one relationship with a slave device based
on major/minor device numbers.

• Only one open is allowed on a master device. Multiple opens are allowed
on the slave device according to standard file mode and ownership per
missions.

• Each slave driver minor device has a node in the file system.

• An open on a master device automatically locks out an open on the
corresponding slave driver.

• A slave cannot be opened unless the corresponding master is open and has
unlocked the slave.

• To provide a tty interface to the user, the ldterm and ptem modules are
pushed on the slave side.

• A close on the master sends a hang-up to the slave and renders both
Streams unusable after all data have been consumed by the process on the
slave side.

• The last close on the slave side sends a 0-length message to the master but
does not sever the connection between the master and slave drivers.

grantpt

The grantpt function changes the mode and the ownership of the slave device
that is associated with the given master device. Given a file descriptor fd,
grantpt first checks that the file descriptor is that of the master device. If so, it
obtains the name of the associated slave device and sets the user id to that of the
user running the process and the group id to tty. The mode of the slave device
is set to 0620.

STREAMS-Based Terminal Subsystem 1 2-25

STREAMS-based Pseudo-Terminal Subsystem

If the process is already running as root, the permission of the slave can be
changed directly without invoking this function. The interface is:

grantpt (int fd) ;

The grantpt function returns 0 on success and -1 on failure. It fails if one or
more of the following occurs: fd is not an open file descriptor, fd is not associ
ated with a master device, the corresponding slave could not be accessed, or a
system call failed because no more processes could be created.

unlockpt

The unlockpt function clears a lock flag associated with a master/slave device
pair. Its interface is:

unlockpt (int fd) ;

The unlockpt returns 0 on success and -1 on failure. It fails if one or more of
the following occurs: fd is not an open file descriptor or fd is not associated with
a master device.

ptsname

The ptsname function returns the name of the slave device that is associated
with the given master device. It first checks that the file descriptor is that of the
master. If it is, it then determines the name of the corresponding slave device
/dev/pts/M and returns a pointer to a string containing the null-terminated
path name. The return value points to static data whose content is overwritten
by each call. The interface is:

char *pt sname (int fd) ;

The ptsname function returns a non-NULL path name upon success and a
NULL pointer upon failure. It fails if one or more of the following occurs: fd is
not an open file descriptor or fd is not associated with the master device.

1 2-26 Programmer's Gulde: STREAMS

A Appendix A: STREAMS Data
Structures

STREAMS Data Structures
streamtab
QUEUE Structures

• queue
• qinit
• module info
• module -stat
• equeue
• qband

Message Structures
iocblk
copyreq
copy resp
strioctl
linkblk
stroptions

Table of Contents

A-1
A-1
A-1
A-2
A-3
A-4
A-4
A-5
A-6
A-6
A-9
A-1 0
A-1 1
A-1 2
A-1 2
A-1 2

STREAMS Data Structures

This appendix summarizes data structures commonly encountered in STREAMS
module and driver development. Most of the data structures given in this
appendix are contained in <sys/stream.h>.

streamtab

This structure defines a module or a driver.

struct streamtab {

} ;

struct qinit *st_rdinit;
struct qinit *st_wrinit;
struct qinit *st_nwcrinit ;
struct qinit *st_ llllXWinit ;

QUEUE Structures

/* defines read queue */
/* defines write queue */
/* for Dlllltiplexinq drivers only */
/* for nultiplexi.nq drivers only */

Two sets of queue structures form a module. The structures are queue, qband,
qinit, module_ info, and module_stat (optional).

Appendix A: STREAMS Data Structures A-1

STREAMS Data Structures

queue

queue structure has the following format:

iifdef _STYPES

struct queue {
struct qinit
struct msgb
struct msgb
struct queue
struct equeue

} ;

vom
us ho rt
us ho rt
short
short
us ho rt
us ho rt

*q_qinfo ;
*q_first ;
*q_last;
*q_next;
*q_eq;
*q_;>tr;

q_count ;
q_flag;
q_minpsz ;
q_maxpsz;
q_hiwat ;
q_lowat ;

ielse /* large definition */

struct queue {
struct qinit
struct msgb
struct msgb
struct queue
struct queue

} ;

vom
ulong
ulong
long
long
ulong
ulong
struct qband
unsigned char
unsigned char
long

*q_qinfo;
*q_first ;
*q_last ;
*q_next;
*q_link;
*q_;>tr;

q_count ;
q_flag;
q_minpsz ;
q_maxpsz;
q_hiwat ;
q_lowat ;

*q_bandp;
q_oband;
q_;>adl [3] ;
q_;>ad2 [2] ;

iendif /* _STYPES */

typedef struct queue queue_t ;

A-2

I* procedures and limits for queue */
/* head of message queue for this queue */
/* tail of message queue for this queue */
/* next queue in Stream*/
I* pointer to an extended queue structure */
/* to private data structure */
I* number of bytes in queue *I
/* queue state */
/* min packet size accepted by this module */
I* max packet size accepted by this module */
I* queue high water mark for flow control */
/* queue low water mark for flow control */

I* procedures and limits for queue */
/* head of message queue for this queue */
I* tail of message queue for this queue */
/* next queue in Stream*/
I* to next queue for scheduling */
/* to private data structure */
/* number of bytes in queue */
I* queue state */
I* min packet size accepted by this module */
I* max packet size accepted by this module */
I* queue high water mark for flow control */
/* queue low water mark for flow control */
I* separate flow infoonation */
/* number of priority bands */
/* reserved for future use */
/* reserved for future use */

Programmer's Guide: STREAMS

STREAMS Data Structures

When a queue pair is allocated, their contents are zero unless specifically initial
ized. The following fields are initialized:

• q_qinfo: st_rdinit and st_wrinit (or st_muxrinit and st_muxwinit) - from
streamtab

• q_minpsz, q_maxpsz, q_hiwat, q_lowat - from module_info

• q_ptr - optionally, by the driver/module open routine

qi nit

qinit format is as follows:

struct qinit

} ;

int
int
int
int
int
struct module_info
struct module_stat

(*qi_JJUtp) () ;
(*qi_srvp) O ;
(*qi_qcpen) () ;
(*qi_qclose) () ;
(*qi_ qadmin) O ;
*qi_minfo;
*qi_mstat ;

Appendix A: STREAMS Data Structures

I* put prooedw:e *I
/* service procedure */
/* called on each open or a push */
/* called on last close or a pop */
/* reserved for future use */
/* infoi::mation structure */
/* statistics structure - optional */

A-3

STREAMS Data Structures

module info

module_ info has the following format:

tifdef _ST?PES

struct module_info
ushort mi_idnum;
char *lni _ iclname;

} ;

short mi_ minpsz ;
short mi_maxpsz;
ushort mi_hiwat;
ushort mi_lowat;

/* module ID nwd:>er */
I* module name */
I* min packet size accepted */
/* max packet size accepted */
I* hiqh water mark, for flow control */
/* low water mark, for flow control */

telse /* large definition */

struct module_info {
ushort mi_idnum;
char *lni _ iclname;

} ;

lonq
lonq
ulonq
ulonq

mi_minpsz ;
mi_maxpsz ;
mi_hiwat;
mi_lowat ;

tendif /* _ST?PES */

module stat

I* module ID nwd:>er */
I* module name */
I* min packet size accepted */
/* max packet size accepted */
/* hiqh water mark, for flow control */
/* low water mark, for flow control */

The format of module stat is:

struct module_stat {
lonq ms_pcnt;
lonq ms_scnt;
lonq ms_ocnt;
lonq ms_ccnt;
lonq ms_acnt;
char *ms _xptr;
short ms_xsize;

} ;

I* count of calls to put proc */
I* count of calls to service proc */
I* count of calls to open proc */
/* count of calls to close proc */
/* count of calls to admin proc */
/* pointer to private statistics */
/* length of private statistics buffer */

Note that in the event these counts are calculated by modules or drivers, the
counts will be cumulative over all instantiations of modules with the same
fmodsw entry and drivers with the same cdevsw entry. (cdevsw and fmodsw
tables are described in Appendix E.)

A-4 Programmer's Gulde: STREAMS

STREAMS Data Structures

equeue

The format of the extended queue structure is:

I* the extended queue structure contains a link to next queue on STREAMS
* schedulinq queue, a pointer to an array of structures containinq the
* flow control parameters for each priority, and nuni>er of priority bands
*
* NOTE : The extended queue structure is only present for non-EF'? systems
*
* I

tifdef _S'l'IE'ES

struct equeue (
struct queue
struct qband
unsigned char

} ;

tdefine <{_link
tdefine C{_bandp
tdefine C{_nband

*eq_link;
*eq_bandp;

eq_nband;

<{_ eq->e<{_link
<{_ eq->eC{_bandp
<{_ eq->e<{_ nband

lendif /* _S'l'IE'ES */

/* to next queue for scheduling */
/* separate flow information */
/* number of priority bands > 0 */

Appendix A: STREAMS Data Structures A-5

STREAMS Data Structures

q band

The queue flow information for each band is contained in the following struc
ture:

/* Structure that describes the separate information for each priority
* band in the queue
*I

struct qband {
struct qband
ulonq

} ;

struct msgb
struct msgb
ulonq
ulonq
ulonq

lonq

*qb_next;
qb_count;

*qb_first;
*qb_last ;
qb_hiwat;
qb_lowat;
qb_flag;

qbJ>adl;

typedef struct qband qband_t;

/*
* qband flags
*/

idefine QB_FULL OxOl
idefine QB_WANTW Ox02
idefine QB_ BACK Ox04

Message Structures

I* next band' s info */
/* number of bytes in band */
/* be9in1ling of band' s data */
/* end of band' s data */
/* high water mark for band */
/* low water mark for band */
/* flag, QB_FULL, denotes that a band of

data flow is flow controlled */
/* reserved for future use */

/* band is considered full */
I* someone wants to write to band */
/* queue has been back-enabled */

A message is composed of a linked list of triples, consisting of two structures
(msgb and datab) and a data buffer.

A-6 Programmer's Gulde: STREAMS

STREAMS Data Structures

I* the message block, msgb, structum */
tifdef _STIPES

struct msgb {

} ;

struct msgb
struct msgb
struct msgb
unsigned char
unsigned char
struct datab

*b_next ;
*b_prev;
*b_cont;
*b_rptr;
*b_wptr;
*b_datap;

/* next message on queue */
/* previous message on queue */
I* next message block of message */
/* first unread data byte in buffer */
/* first unwritten data byte in buffer */
I* data block */

tdefine b_band
tdefine b_flaq

b_datap->db_band
b_datap->db_flaq

telse /* large definition */

struct msgb {

} ;

struct msgb
struct msgb
struct msgb
unsigned char
unsigned char
struct datab
unsigned char
unsigned char
unsigned short
lonq

*b_next;
*b_prev;
*b_cont;
*b_J:ptr;
*b_wptr;
*b_datap;
b_band;
b_padl;
b_flaq;
b_pad2;

tendif /* _STIPES */

/* next message on queue */
I* previous message on queue */
/* next message block of message */
/* first unread data byte in buffer */
/* first unwritten data byte in buffer */
I* data block •/
/* message priority */

typedef struct msgb mblk_t;
typedef st:cuct datab dblk_t;
typedef struct free_rtn frtn_t ;

} ;
I* Message flags . These are interpreted by the Stream head . */

/* last byte of message is "marked" */ tdefine � OxOl
tdefine MSGNOLOOP Ox02
tdef ine MSGDELIM Ox04

I* don' t lOOP message around to write-side of Stream */
I* message is delimited */

Appendix A: STREAMS Data Structures A·7

STREAMS Data Structures

/* data block, datab, structure */
iifdef _ST?PES
struct datab {

union {

} ;
ielse

struct datab *freep;
struct free_rtn *frtnp;

db_f;
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

unsigned char
unsigned int
unsigned short
unsigned short
caddr_t

/* used internally */
db_base; / first byte of buffer * */
*db_lim;

db_ref;
db_type ;
db_band;

/* last byte+l of buffer */
/* count of messages pointinq to this block */
/* message type */
/* message priority, detennines where a

message is placed when enqueued */
db_iswhat; /* status of message/data/buffer triplet */
db_size; /* used internally */
db_flag; /* data block flag */
db_pad;
db_msgaddr; /* triplet message header pointinq to datab */

I* large definition */

struct datab {
union {

} ;

struct datab *freep;
struct free_rtn *frtnp;

db_f;
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned int
caddr_t
lonq

*db_base;
*db_li.m;
db_ref;
db_type ;
db_iswhat;
db_size;
db_msgaddr;
db_filler;

iendif /* _STIPES */

idefine db_freep db_f . freep
idefine db_frtnp db_f . frtnp

typedef struct datab dblk_t;

A-8

/* used internally */
/* first byte of buffer * */
/* last byte+l of buffer */
/* count of messages pointing to this block *I
/* message type */
/* status of message/data/buffer triplet */
/* used internally */
/* triplet message header pointing to datab */
/* reserved for future use */

Programmer's Guide: STREAMS

STREAMS Data Structures

iocblk

This is contained in an M_IOCTL message block:

tifd.ef _ST?PES

struct iocblk {

} ;

int ioc_and;
o_uid_t
0_9id_t
uint
uint
int
int

ioc_uid;
ioc_9id;
ioc_id;
ioc_count;
ioc_error;
ioc_rval;

/* ioctl coamancl type */
/* effective uid of user */
/* effective 9id of user */
/* ioctl id */
/* count of bytes in data field */
I* error code */
/* return value */

telse /* large definition */

struct iocblk {

} ;

int ioc_and; /* ioctl coamancl type */
cNCl_t *ioc_cr; /* full credentials */
uint ioc_id; /* ioctl id */
uint ioc_count ; /* count of bytes in data field */
int ioc_error; /* error code */
int ioc_rval; /* return value */
101'19' ioc_filler [4] ; / * reserved for future use */

tdefine ioc uid ioc cr->cr uid
ldefine ioc

-:
9id ioc

-
cr->cr

-:
9id - - -

lendif /* _ST?PES */

Appendix A: STREAMS Data Structures A-9

STREAMS Data Structures

copyreq

This is used in M _ COPYIN/M _ COPYOUT messages:

tifdef _STYPES

stJ:UCt copymq {

} ;

int
o_uid_t
o_qid_t
uint
caddr_t
uint
int
mblk_t

cct_cnd;
cct_Uid;
cct_qid;
cct_id;
cct_addr;
cct_size;
cct_flaq;

*oq_private;

ielse /* large definition */

str:uct copyreq {

} ;

int cct_cad;
cred_t *cct_cr;
uint cct_id;
caddr_t cct_addr;
uint
int
mblk_t
lonq

cct_Size;
cct_flaq;

*oq_private ;
cct_filler [4] ;

tdefine cq_uid cq_cr->cr_uid
tdefine cq_qid cq_cr->cr_qid

iendif /* _STYPES */

I* cq_flaq values */

/* ioctl comnand (from ioc_cnd) */
/* effective uid of user */
/* effective qid of user */
/* ioctl id (from ioc_id) */
/* add:tess to copy data to/from */
/* number of bytes to copy */
/* see below */
/* private state infonnation */

/* ioctl comnand (from ioc_cnd) */
/* full credentials */
/* ioctl id (from ioc_id) */
/* address to copy data to/from */
/* number of bytes to copy */
/* see below */
/* private state infonnation */
/* reserved for future use */

idef ine STRCANON OxOl
idefine RECOPY Ox02

/* b_cont data block contains canonical format specifier */
/* perform I_STR copyin aqain this time using canonical

fo:cmat specifier */

A-10 Programmer's Gulde: STREAMS

STREAMS Data Structures

copyresp

This structure is used in M IOCDATA:

fifdef _STYPES

struct copyresp

} ;

int cp_and;
o_uid_t cp_uid;
o_gi.d_t cp_gid;
uint cp_id;
caddr_t cp_rval;

uint
int
mblk_t

cp_padl;
cp_pad2;

*cp_private;

lelse /* large definition */

struct copyresp {

} ;

int cp_and;
cJ:ed_t *cp_cr;
uint cp_id;
caddr_t cp_rval;

uint
int
mblk_t
long

cp_padl;
cp_pad2;

*cp_private;
cp _filler [4] ;

ldefine cp uid cp cr->cr uid
fdefine cp=gid cp:Cr->cr=gi.d

fenclif /* _STYPES */

/* ioctl comnand (from ioc_cnr::l) */
I* effective uid of user */
/* effective gid of user */
/* ioctl id (from ioc_id) */
I* status of request : 0 for sucoess

non-zero for failure */
I* reserved */
/* reserved */
/* private state information */

/* ioctl comnand (from ioc_cnd) */
/* full credentials */
/* ioctl id (from ioc_id) */
/* status of request; 0 for success

non-zero for failure */
/* reserved */
/* reserved */
/* private state information */
/* reserved for future use */

Appendix A: STREAMS Data Structures A-1 1

STREAMS Data Structures

strioctl

This structure supplies user values as an argument to the ioctl call I_ STR in
streamio(7).

struct strioctl {

} ;

int io_and;
int io_timout;
int io_len;
char *io_dp;

l inkblk

I * downstream request */
I* timeout aclcnowledgement - ACK/NAK */
/* length of data argument */
/* pointer to data argument */

I* this is used in lower multiplexor drivers to indicate a link */
tifdef _STYPBS

struct linlcbllt {
queue_t *l_qtop;

} ;

queue_t *l_qbot;
int l_index;

I* lo-st level write queue of upper Stream *I
I* set to HULL for persistent links */
I* highest level write queue of lower Stream */
I* system-unique index for lo-r Stream */

telse /* luge definition */

struot linlcbllt {
queue t *l_qtop;

} ;

queue t *l_qbot;
int l_index;
long l_pad [S] ;

iendi.f /* _STYPBS */

A-12

I* lo-st level write queue for upper Stream */
/* set to HULL for persistent links */
/* highest level write queue of lower Stream */
I* system-unique index for lo-r Stream */
I* reserved for future use */

Programmer's Gulde: STREAMS

stroptions

tifdef _S'nPES
struct stroptions

short so_flags;
so_readopt ;
so_wroff;
so_mi.npsz;
so_maxpsz;
so_biwat;
so_lowat;
so_band;

} ;

short
ushort
short
short
usbort
usbort
unsigned char

telse /* large definition */
struct stroptions {

} ;

ulonq so_flags;
short so_readopt ;
usbort so_wroff;
lonq
long
ulonq
ulonq
unsigned char

so_mi.npsz;
so_mupsz;
so_biwat;
so_lowat ;
so_band;

tendif /* S'nPES */

I* options to set */
I* read option */
I* write offset */

STREAMS Data Structures

I* mininllm :cead packet size */
I* maxinlllD :cead packet size */
I* read queue high water mark */
I* read queue low water mark *I
I* band for water marks */

/* options to set */
I* read option */
I* write offset */
/* mi.ninml :cead packet size */
I* maximlm :cead packet size */
/* :cead queue high water mark */
I* read queue low water mark */
/* band for water marks */

I* flags fo-; Stream options set nesaage */
tdefine SO_ALL Ox003f I* set all options */
tdefine SO_ READOPT OxOOOl I* set :cead option */
tdef ine S0_11ROFJ!' Ox0002 I* set write offset */
tdef ine SO_MINPSZ Ox0004 /* set minilll.lm packet size */
tdefine SO_MAXPSZ Ox0008 I* set maxilll.lm packet size */
tdefine SO_BIWAT OxOOlO I* set high water mark */
tdefine SO_LOWAT Ox0020 /* set low water mark */
tdefine SO_MRBADON Ox0040 /* set :cead notification on */
tdef ine SO_MREADOFF Ox0080 I* set :cead notification off */
tdef ine SO_NDELON OxOlOO /* old TTY semantics for NDELAY :ceads/writea */
tdef ine SO_NDELOFF Ox0200 /* STREAMS semantics for NDELAY :ceads/writea */
tdef ine SO_ISTTY Ox0400 I* St:ceam is acting as temina.l */
tdefine SO_ISNTTY Ox0800 /* Stream is not actinq as a te.cminal */
tdefine SO_TOSTOP OxlOOO I* stop on backqround writes to Stream */
tdefine SO_TONSTOP Ox2000 I* don' t atop on backqround jobs to St:ceam */
tdefine SO_BAND Ox4000 I* water marks that affect band */

Appendix A: STREAMS Data Structures A-1 3

B Appendix B : Message Types

Message Types B-1

Ordi nary Messages B-2

High Priority Messages B-1 4

Table of Contents

. .. �,,

Message Types

Defined STREAMS message types differ in their intended purposes, their treat
ment at the Stream head, and in their message queueing priority.

STREAMS does not prevent a module or driver from generating any message
type and sending it in any direction on the Stream. However, established pro
cessing and direction rules should be observed. Stream head processing accord
ing to message type is fixed, although certain parameters can be altered.

The message types are described in this appendix, classified according to their
message queueing priority. Ordinary messages are described first, with high
priority messages following. In certain cases, two message types may perform
similar functions, differing only in priority. Message construction is described
in Chapter 5. The use of the word module will generally imply "module or
driver."

Ordinary messages are also called normal or non-priority messages. Ordinary
messages are subject to flow control whereas high priority messages are not.

Appendix B : Message Types B-1

Ord inary Messages

M BREAK

M CTL

M DATA

M DELAY

B-2

Sent to a driver to request that BREAK be transmitted on
whatever media the driver is controlling.

The message format is not defined by STREAMS and its use
is developer dependent. This message may be considered a
special case of an M _ CTL message. An M _BREAK message
cannot be generated by a user-level process and is always
discarded if passed to the Stream head.

Generated by modules that wish to send information to a
particular module or type of module. M _ CTL messages are
typically used for inter-module communication, as when
adjacent STREAMS protocol modules negotiate the terms of
their interface. An M _ CTL message cannot be generated by
a user-level process and is always discarded if passed to the
Stream head.

Intended to contain ordinary data. Messages allocated by the
allocb() routine (see Appendix C) are type M _DAT A by
default. M_DATA messages are generally sent bidirection
ally on a Stream and their contents can be passed between a
process and the Stream head. In the getmsg(2) and
putmsg(2) system calls, the contents of M_DATA message
blocks are referred to as the data part. Messages composed
of multiple message blocks will typically have M_DATA as
the message type for all message blocks following the first.

Sent to a media driver to request a real-time delay on output.
The data buffer associated with this message is expected to
contain an integer to indicate the number of machine ticks of
delay desired. M _DELAY messages are typically used to
prevent transmitted data from exceeding the buffering capa
city of slower terminals.

The message format is not defined by STREAMS and its use
is developer dependent. Not all media drivers may under
stand this message. This message may be considered a spe
cial case of an M _ CTL message. An M _DELAY message can
not be generated by a user-level process and is always dis
carded if passed to the Stream head.

Programmer's Gulde: STREAMS

M IOCTL

Ordinary Messages

Generated by the Stream head in response to I_ STR, I_ LINK,
I UNLINK, I PLINK, and I PUNLINK [ioctl(2) STREAMS
system calls, See streamio(7)], and in response to ioctl calls
which contain a command argument value not defined in
streamio(7). When one of these ioctls is received from a user
process, the Stream head uses values supplied in the call and
values from the process to create an M_IOCTL message con
taining them, and sends the message downstream.
M_IOCTL messages are intended to perform the general ioctl
functions of character device drivers.

For an I_ STR ioctl, the user values are supplied in a structure
of the following form, provided as an argument to the ioctl
call [see I_STR in streamio(7)) :

str:uct strioctl
{

} ;

int ic aid;
int ic :um::ut;
int ic len;
char •ic:q,;

I* downstream D!lqU8St •/
I* 1!CK/NAK tiJrecut *I
/* length of data arq *I
/* ptr to data arq *I

where ic _ cmd is the request (or command) defined by a
downstream module or driver, ic_timout is the time the
Stream head will wait for acknowledgement to the M_IOCTL
message before timing out, and ic_dp is a pointer to an
optional data buffer. On input, ic_len contains the length of
the data in the buffer passed in and, on return from the call,
it contains the length of the data, if any, being returned to
the user in the same buffer.

The M _IOCTL message format is one M _IOCTL message
block followed by zero or more M_DATA message blocks.
STREAMS constructs an M _IOCTL message block by placing
an iocblk structure, defined in <sys/stream.h>, in its data
buffer (see Appendix A for a complete iocblk structure):

Appendix B: Message Types B-3

Ordinary Messages

B-4

stmct iod>llt
{

ioc_an:i; /* ioc:t1 oamand type */ int
c:red_t
uint

ioc_cr; / full cmdentiala */

} ;

uint
int
int
l.oa]

ioc_ id; /* ioctl identifier */
ioc_cxuit; /* byte ownt for ioc:t1 data */
ioc_enor; /* enor code for M_ICX:lat or M_ICCW< */
ioc_rval; /* :cetum value for M_IOCla(*/
ioc_filler[4] ; /* mserwd for futw:e use */

For an I_ STR ioctl, ioc _ cmd corresponds to ic _ cmd of the
strioctl structure. ioc _er points to a credentials structure
defining the user process's permissions (see <cred.h>). Its
contents can be tested to determine if the user issuing the
ioctl call is authorized to do so. For an I_STR ioctl, ioc_count
is the number of data bytes, if any, contained in the message
and corresponds to ic _len.

ioc _id is an identifier generated internally, and is used by the
Stream head to match each M_IOCTL message sent down·
stream with response messages sent upstream to the Stream
head. The response message which completes the Stream
head processing for the ioctl is an M_IOCACK (positive ack
nowledgement) or an M _IOCNAK (negative acknowledge
ment) message.

For an I_STR ioctl, if a user supplies data to be sent down
stream, the Stream head copies the data, pointed to by ic _dp
in the strioctl structure, into M_DATA message blocks and
links the blocks to the initial M _IOCTL message block.
ioc_count is copied from ic_len. If there are no data, ioc_count
is zero.

If the Stream head does not recognize the command argument
of an ioctl, it creates a transparent M_IOCTL message. The
format of a transparent M_IOCTL message is one M_IOCTL
message block followed by one M_DATA block. The form of
the iocblk structure is the same as above. However, ioc _ cmd
is set to the value of the command argument in the ioctl sys
tem call and ioc _count is set to TRANSPARENT, defined in
<sys/stream.h>. TRANSPARENT distinguishes the case
where an I_S1R ioctl may specify a value of ioc_cmd
equivalent to the command argument of a transparent ioctl.

Programmer's Gulde: STREAMS

Ordinary Messages

The M_DATA block of the message contains the value of the
arg parameter in the ioctl call.

The first module or driver that understands the ioc cmd
request contained in the M_IOCTL acts on it. For an I_STR
ioctl, this action generally includes an immediate upstream
transmission of an M_IOCACK message. For transparent
M _IOCTLs, this action generally includes the upstream
transmission of an M _ COPYIN or M _ COPYOUT message.

Intermediate modules that do not recognize a particular
request must pass the message on. If a driver does not
recognize the request, or the receiving module can not
acknowledge it, an M_IOCNAK message must be returned.

M_IOCACK and M_IOCNAK message types have the same
format as an M_IOCTL message and contain an iocblk struc
ture in the first block. An M _IOCACK block may be linked
to following M_DATA blocks. If one of these messages
reaches the Stream head with an identifier which does not
match that of the currently-outstanding M_IOCTL message,
the response message is discarded. A common means of
assuring that the correct identifier is returned is for the
replying module to convert the M_IOCTL message into the
appropriate response type and set ioc _count to 0, if no data
are returned. Then, the qreply() utility (see Appendix C) is
used to send the response to the Stream head.

In an M_IOCACK or M_IOCNAK message, ioc_error holds
any return error condition set by a downstream module. If
this value is non-zero, it is returned to the user in errno.
Note that both an M_IOCNAK and an M_IOCACK may
return an error. However, only an M _IOCACK can have a
return value. For an M_IOCACK, ioc_rval holds any return
value set by a responding module. For an M_IOCNAK,
ioc _ rval is ignored by the Stream head.

If a module processing an I_STR ioctl wants to send data to
a user process, it must use the M_IOCACK message which it
constructs such that the M IOCACK block is linked to one or
more following M_DATA blocks containing the user data.
The module must set ioc _count to the number of data bytes

Appendix B : Message Types B-5

Ordinary Messages

M PASSFP

B-6

sent. The Stream head places the data in the address pointed
to by ic_dp in the user I_STR strioctl structure.

If a module processing a transparent ioctl (i.e., it received a
transparent M _IOCTL) wants to send data to a user process,
it can use only an M _ COPYOUT message. For a transparent
ioctl, no data can be sent to the user process in an
M_IOCACK message. All data must have been sent in a
preceding M _ COPYOUT message. The Stream head will
ignore any data contained in an M _IOCACK message (in
M_DATA blocks) and will free the blocks.

No data can be sent with an M _IOCNAK message for any
type of M_IOCTL. The Stream head will ignore and will free
any M_DATA blocks.

The Stream head blocks the user process until an
M_IOCACK or M_IOCNAK response to the M_IOCTL (same
ioc _id) is received. For an M _IOCTL generated from an
I_STR ioctl, the Stream head will "time out" if no response is
received in ic_timout interval (the user may specify an explicit
interval or specify use of the default interval). For M_IOCTL
messages generated from all other ioctls, the default (infinite)
is used.

Used by STREAMS to pass a file pointer from the Stream
head at one end of a Stream pipe to the Stream head at the
other end of the same Stream pipe.

The message is generated as a result of an I_SENDFD ioctl
[see streamio(7)] issued by a process to the sending Stream
head. STREAMS places the M _ P ASSFP message directly on
the destination Stream head's read queue to be retrieved by
an I_RECVFD ioctl [see streamio(7)] . The message is placed
without passing it through the Stream (i.e., it is not seen by
any modules or drivers in the Stream). This message should
never be present on any queue except the read queue of a
Stream head. Consequently, modules and drivers do not
need to recognize this message, and it can be ignored by
module and driver developers.

Programmer's Gulde: STREAMS

M_PROTO

Ordinary Messages

Intended to contain control information and associated data.
The message format is one or more (see note) M _PROTO
message blocks followed by zero or more M_DATA message
blocks as shown in Figure B-1. The semantics of the
M_DATA and M_PROTO message block are determined by
the STREAMS module that receives the message.

The M _PROTO message block will typically contain imple
mentation dependent control information. M_PROTO mes
sages are generally sent bidirectionally on a Stream, and their
contents can be passed between a process and the Stream
head. The contents of the first message block of an
M _PROTO message is generally referred to as the control
part, and the contents of any following M_DATA message
blocks are referred to as the data part. In the getmsg(2) and
putmsg(2) system calls, the control and data parts are passed
separately.

NOTE: On the write-side, the user can only generate
M_PROTO messages containing one M_PROTO message
block.

Although its use is not recommended, the format of
M_PROTO and M_PCPROTO (generically PROTO) messages
sent upstream to the Stream head allows multiple PROTO
blocks at the beginning of the message. getmsg(2) will com
pact the blocks into a single control part when passing them
to the user process.

Appendix B: Message Types 8·7

Ordinary Messages

Figure B-1 : M_PROTO and M_PCPROTO Message Structure

M PROTO
or

M PCPROfO

�

M DATA

'

M DATA

-

-

-

control
informatio

- - - -1 data

- - - -1 data

M RSE Reserved for internal use. Modules that do not recognize
this message must pass it on. Drivers that do not recognize
it must free it.

M_SETOYfS Used to alter some characteristics of the Stream head. It is
generated by any downstream module, and is interpreted by
the Stream head. The data buffer of the message has the fol
lowing structure (see Appendix A for a complete stroptions
structure):

B-8 Programmer's Gulde: STREAMS

Ordinary Messages

stmct stJ:optioos
{

} ;

ulorq so_fl.aqs; /* optioos to set */
short so_readopt; /* z:ead option */
ushort so_wroff; /* write offset */
l.ooq so_mirpsz; /* minimn read packet size */
l.ooq so_maxpsz; /* maxinum read packet size */
u1orq so_hiwa.t; /* z:ead queue hi.cj!.-wa.ter mark */
ulorq so_lowa.t; /* z:ead queue low-water mark */
ims:igned char so_band; /* update water marks for this band */

where so fags specifies which options are to be altered, and
can be any combination of the following:

• SO_ ALL: Update all options according to the
values specified in the remaining fields of the
stroptions structure.

• SO_REAOOPT: Set the read mode [see read(2}] to
RNORM (byte stream), RMSGD (message discard),
RMSGN (message non-discard), RPROTNORM (nor
mal protocol), RPROTDAT (tum M_PROTO and
M_PCPROTO messages into M_DATA messages), or
RPROTDIS (discard M_PROTO and M_PCPROTO
blocks in a message and retain any linked M _DAT A
blocks) as specified by the value of so _readopt.

• SO WROFF: Direct the Stream head to insert an
offset (unwritten area, see "Write Offset'' in Chapter
5) specified by so_ wroff into the first message block
of all M_DATA messages created as a result of a
write(2) system call. The same offset is inserted into
the first M_DATA message block, if any, of all mes
sages created by a putmsg system call. The default
offset is zero.

Appendix B : Message Types

The offset must be less than the maximum message
buffer size (system dependent). Under certain cir
cumstances, a write offset may not be inserted. A
module or driver must test that b _ rptr in the msgb
structure is greater than db _base in the datab struc
ture to determine that an offset has been inserted in
the first message block.

8-9

Ordinary Messages

B-10

• SO_ MINPSZ: Change the minimum packet size
value associated with the Stream head read queue
to so_ minpsz (see q_ minpsz in the queue structure,
Appendix A). This value is advisory for the module
immediately below the Stream head. It is intended
to limit the size of M_DATA messages that the
module should put to the Stream head. There is no
intended minimum size for other message types.
The default value in the Stream head is zero.

• SO_ MAXPSZ: Change the maximum packet size
value associated with the Stream head read queue
to so_ maxpsz (see q_ maxpsz in the queue structure,
Appendix A). This value is advisory for the module
immediately below the Stream head. It is intended
to limit the size of M_DATA messages that the
module should put to the Stream head. There is no
intended maximum size for other message types.
The default value in the Stream head is INFPSZ, the
maximum STREAMS allows.

• SO_HIWAT: Change the flow control high water
mark (q_ hiwat in the queue structure, qb _ hiwat in the
qband structure) on the Stream head read queue to
the value specified in so _hiwat.

• SO_LOWAT: Change the flow control low water
mark (q_lowat in the queue structure, qb Jowat in the
q band structure) on the Stream head read queue to
the value specified in so _lowat.

• SO_MREADON: Enable the Stream head to gen
erate M _READ messages when processing a read(2)
system call. If both SO_ MREADON and
SO_MREADOFF are set in so_flags, SO_MREAOOFF
will have precedence.

• SO_ MREADOFF: Disable the Stream head genera
tion of M _READ messages when processing a
read(2) system call. This is the default. If both
SO MREADON and SO MREADOFF are set in
so Jags, SO_ MREAOOFF will have precedence.

Programmer's Gulde: STREAMS

---------------------- Ord inary Messages

• SO_NDELON: Set non-STREAMS tty semantics for
O_NDELAY (or O_NONBLOCK) processing on
read(2) and write(2) system calls. If O_NDELAY (or
0 _ NONBLOCK) is set, a read(2) will return 0 if no
data are waiting to be read at the Stream head. If
0 ND ELA Y (or 0 NONBLOCK) is clear, a read(2)
will block until data become available at the Stream
head. (See note below)

Regardless of the state of O _ NDELA Y (or
O_NONBLOCK), a write(2) will block on flow con
trol and will block if buffers are not available.

If both SO NDELON and SO NDELOFF are set in
so_flags, s6_NDELOFF will have precedence.

NOTE: For conformance with the POSIX standard,
it is recommended that new applications use the
O_NONBLOCK flag whose behavior is the same as
that of 0 NDELAY unless otherwise noted.

• SO NDELOFF: Set STREAMS semantics for

Appendix B: Message Types

O _ NDELA Y (or O _ NONBLOCK) processing on
read(2) and write(2) system calls. If O_NDELAY (or
0 _ NONBLOCK) is set, a read(2) will return -1 and
set EAGAIN if no data are waiting to be read at the
Stream head. If O _ NDELAY (or O _ NONBLOCK) is
clear, a read(2) will block until data become avail
able at the Stream head. (See note above)

If 0 _ NDELAY (or 0 _ NONBLOCK) is set, a write(2)
will return -1 and set EAGAIN if flow control is in
effect when the call is received. It will block if
buffers are not available. If O_NDELAY (or
0 _ NONBLOCK) is set and part of the buffer has
been written and a flow control or buffers not avail
able condition is encountered, write(2) will ter
minate and return the number of bytes written.

If O_NDELAY (or O_NONBLOCK) is clear, a
write(2) will block on flow c.ontrol and will block if
buffers are not available.

B-1 1

Ordinary Messages

B-1 2

This is the default. If both SO NDELON and
SO_NDELOFF are set in so_Jlags, SO_NDELOFF will
have precedence.

In the STREAM�based pipe mechanism, the
behavior of read(2) and write(2) is different for the
O _ NDELAY and O _ NONBLOCK flags. See read(2)
and wrlte(2) for details.

• SO BAND: Set water marks in a band. If the
SO_ BAND flag is set with the SO_ HIW AT or
SO_LOWAT flag, the so_band field contains the
priority band number the so_ hiwat and so _lowat
fields pertain to.

If the SO_ BAND flag is not set and the SO_ HIW AT
and SO_ LOW AT flags are on, the normal high and
low water marks are affected. The SO_ BAND flag
has no effect if SO_HIWAT and SO_LOWAT flags
are off.

Only one band's water marks can be updated with a
single M _ SETOPTS message.

• SO ISTTY: Inform the Stream head that the Stream
is acting like a controlling terminal.

• SO ISNTTY: Inform the Stream head that the
Stream is no longer acting like a controlling termi
nal.

For SO_ISTTY, the Stream may or may not be allo
cated as a controlling terminal via an M_SETOPTS
message arriving upstream during open processing.
If the Stream head is opened before receiving this
message, the Stream will not be allocated as a con
trolling terminal until it is queued again by a ses
sion leader.

• SO TOSTOP: Stop on background writes to the
Stream.

Programmer's Gulde: STREAMS

----------------------- Ordinary Messages

M SIG

• SO_ TONSTOP: Do not stop on background writes
to the Stream.

SO TOSTOP and SO TONSTOP are used in con-- -

junction with job control.

Sent upstream by modules or drivers to post a signal to a
process. When the message reaches the front of the Stream
head read queue, it evaluates the first data byte of the mes
sage as a signal number, defined in <sys/signal.h>. (Note
that the signal is not generated until it reaches the front of
the Stream head read queue.) The associated signal will be
sent to process(es) under the following conditions:

If the signal is SIGPOLL, it will be sent only to those
processes that have explicitly registered to receive the signal
[see I_SETSIG in streamio(7)] .

If the signal is not SIGPOLL and the Stream containing the
sending module or driver is a controlling tty, the signal is
sent to the associated process group. A Stream becomes the
controlling tty for its process group if, on open(2), a module
or driver sends an M_SETOPTS message to the Stream head
with the SO_ ISTIY flag set.

If the signal is not SIGPOLL and the Stream is not a control
ling tty, no signal is sent, except in case of SIOCSPGRP and
TIOCSPGRP. These two ioctls set the process group field in
the Stream head so the Stream can generate signals even if it
is not a controlling tty.

Appendix B : Message Types 8·1 3

High Priority Messages

M COPYIN

B-14

Generated by a module or driver and sent upstream to
request that the Stream head perform a copyin() on behalf of
the module or driver. It is valid only after receiving an
M_IOCTL message and before an M_IOCACK or
M IOCNAK.

The message format is one M _ COPYIN message block con
taining a copyreq structure, defined in <sys/stream.h> (see
Appendix A for a complete copyreq structure):

stmct cxpymq {

} ;

int ot_cml; /* ioctl CIClllllllrd (fran i.oc_cml) */
�t *ot_cr; /* full ccedentials */
uint ot_id; /* ioctl id (fran i.oc_i.d) */
cadclr_t ot_addr; /* adlkess to copy data to/fran */
uint ot_size; /* IUlber of bytes to copy */
int ot_flaq; /* reserved */
nt>llt_t *CXl.Jrivate; /* private state infozmatic:n */
lonq q>_fill.er [4] ; /* reserved for futum use */

The first four members of the structure correspond to those
of the iocblk structure in the M_IOCTL message which
allows the same message block to be reused for both struc
tures. The Stream head will guarantee that the message
block allocated for the M _IOCTL message is large enough to
contain a copyreq structure. The cq_addr field contains the
user space address from which the data are to be copied.
The cq_size field is the number of bytes to copy from user
space. The cq.Jlag field is reserved for future use and should
be set to zero.

The cqyrivate field can be used by a module to point to a
message block containing the module's state information
relating to this ioctl. The Stream head will copy (without
processing) the contents of this field to the M_IOCDATA
response message so that the module can resume the associ
ated state. If an M _ COPYIN or M _ COPYOUT message is
freed, S1REAMS will not free any message block pointed to
by cqyrivate. This is the module's responsibility.

This message should not be queued by a module or driver
unless it intends to process the data for the ioctl.

Programmer's Gulde: STREAMS

High Priority Messages

M COPYOUT Generated by a module or driver and sent upstream to
request that the Stream head perform a copyout() on behalf
of the module or driver. It is valid only after receiving an
M_IOCTL message and before an M_IOCACK or

M ERROR

M IOCNAK.

The message format is one M _ COPYOUT message block fol
lowed by one or more M_DATA blocks. The M_COPYOUT
message block contains a copyreq structure as described in
the M _ COPYIN message with the following differences: The
cq_addr field contains the user space address to which the
data are to be copied. The cq_size field is the number of
bytes to copy to user space.

Data to be copied to user space is contained in the linked
M DATA blocks.

This message should not be queued by a module or driver
unless it intends to process the data for the ioctl in some
way.

Sent upstream by modules or drivers to report some down
stream error condition. When the message reaches the
Stream head, the Stream is marked so that all subsequent
system calls issued to the Stream, excluding close(2) and
poll(2), will fail with errno set to the first data byte of the
message. POLLERR is set if the Stream is being polled [see
poll(2)] . All processes sleeping on a system call to the
Stream are awakened. An M _FLUSH message with
FLUSHRW is sent downstream.

The Stream head maintains two error fields, one for the
read-side and one for the write-side. The one-byte format
M _ERROR message sets both of these fields to the error
specified by the first byte in the message.

The second style of the M _ERROR message is two bytes
long. The first byte is the read error and the second byte is
the write error. This allows modules to set a different error
on the read-side and write-side. If one of the bytes is set to
NOERROR, then the field for the corresponding side of the
Stream is unchanged. This allows a module to just an error
on one side of the Stream. For example, if the Stream head
was not in an error state and a module sent an M ERROR

Appendix B : Message Types B-1 5

High Priority Messages

M FLUSH

B-1 6

message upstream with the first byte set to EPROTO and the
second byte set to NOERROR, all subsequent read-like sys
tem calls (for example, read, getmsg) will fail with EPROTO,
but all write-like system calls (for example, write, putmsg)
will still succeed. If a byte is set to 0, the error state is
cleared for the corresponding side of the Stream. The values
NOERROR and 0 are not valid for the one-byte form of the
M _ERROR message.

Requests all modules and drivers that receive it to flush their
message queues (discard all messages in those queues) as
indicated in the message. An M _FLUSH can originate at the
Stream head, or in any module or driver. The first byte of
the message contains flags that specify one of the following
actions:

• FLUSHR: Flush the read queue of the module.

• FLUSHW: Flush the write queue of the module.

• FLUSHRW: Flush both the read queue and the
write queue of the module.

• FLUSHBAND: Flush the message according to the
priority associated with the band.

Each module passes this message to its neighbor after flush
ing its appropriate queue(s), until the message reaches one of
the ends of the Stream.

Drivers are expected to include the following processing for
M_FLUSH messages. When an M_FLUSH message is sent
downstream through the write queues in a Stream, the driver
at the Stream end discards it if the message action indicates
that the read queues in the Stream are not to be flushed
(only FLUSHW set). If the message indicates that the read
queues are to be flushed, the driver shuts off the FLUSHW
flag, and sends the message up the Stream's read queues.
When a flush message is sent up a Stream's read-side, the
Stream head checks to see if the write-side of the Stream is to
be flushed. If only FLUSHR is set, the Stream head discards
the message. However, if the write-side of the Stream is to
be flushed, the Stream head sets the M_FLUSH flag to

Programmer's Gulde: STREAMS

High Priority Messages

FLUSHW and sends the message down the Stream's write
side. All modules that enqueue messages must identify and pro
cess this message type.

If FLUSHBAND is set, the second byte of the message con
tains the value of the priority band to flush.

M HANGUP Sent upstream by a driver to report that it can no longer
send data upstream. As example, this might be due to an
error, or to a remote line connection being dropped. When
the message reaches the Stream head, the Stream is marked
so that all subsequent write(2) and putmsg(2) system calls
issued to the Stream will fail and return an ENXIO error.
Those ioctls that cause messages to be sent downstream are
also failed. POLLHUP is set if the Stream is being polled
[see poll(2)] .

M IOCACK

However, subsequent read(2) or getmsg(2) calls to the Stream
will not generate an error. These calls will return any mes
sages (according to their function) that were on, or in transit
to, the Stream head read queue before the M _HANGUP mes
sage was received. When all such messages have been read,
read(2} will return 0 and getmsg(2) will set each of its two
length fields to 0.

This message also causes a SIGHUP signal to be sent to the
controlling process instead of the foreground process group,
since the allocation and deallocation of controlling terminals
to a session is the responsibility of the controlling process.

Signals the positive acknowledgement of a previous
M_IOCTL message. The message format is one M_IOCACK
block (containing an iocblk structure, see M _IOCTL) fol
lowed by zero or more M_DATA blocks. The iocblk data
structure may contain a value in ioc_rval to be returned to
the user process. It may also contain a value in ioc_error to
be returned to the user process in errno.

If this message is responding to an I_ STR ioctl [see
streamio(7)], it may contain data from the receiving module
or driver to be sent to the user process. In this case, message
format is one M_IOCACK block followed by one or more
M_DATA blocks containing the user data. The Stream head

Appendix B : Message Types B-1 7

High Priority Messages

returns the data to the user if there is a corresponding out
standing M_IOCTL request. Otherwise, the M_IOCACK
message is ignored and all blocks in the message are freed.

Data can not be returned in an M_IOCACK message
responding to a transparent M _IOCTL. The data must have
been sent with preceding M _ COPYOUT message(s). If any
M_DATA blocks follow the M_IOCACK block, the Stream
head will ignore and free them.

The format and use of this message type is described further
under M IOCTL.

M IOCDATA Generated by the Stream head and sent downstream as a
response to an M _ COPYIN or M _ COPYOUT message. The
message format is one M_IOCDATA message block followed
by zero or more M_DATA blocks. The M_IOCDATA mes
sage block contains a copyresp structure, defined in
<sys/stream.h> (see Appendix A for a complete copyresp
structure):

B-1 8

stmct cx:pyi:esp {

} ;

int cp_aid;
cted_t *cp_c:r;
uint cp_id;
caddr_t cp_rval;

/* ioctl cxmnard (f:can i.oc_and) */
I* full ccedential.s */
I* ioctl id (f:can ioc_id) */
I* status of i:equest : 0 -> suooess

non_zero -> failure */
uint cp_padl.; /* reserwd */
int cp_pad2; /* :reserved */
nblk_t *cp_private; /* private state info (fran oq_private) */
lonq cp_filler [4] ;/* reserwd for future use */

The first three members of the structure correspond to those
of the iocblk structure in the M_IOCTL message which
allows the same message blocks to be reused for all of the
related transparent messages (M _ COPYIN, M _ COPYOUT,
M_IOCACK, M_IOCNAK). The cp_rval field contains the
result of the request at the Stream head. Zero indicates suc
cess and non-zero indicates failure. If failure is indicated, the
module should not generate an M _IOCNAK message. It
must abort all ioctl processing, clean up its data structures,
and return.

Programmer's Gulde: STREAMS

High Priority Messages

The cp yrivate field is copied from the cqyrivate field in the
associated M _ COPYIN or M _ COPYOUT message. It is
included in the M_IOCDATA message so the message can be
self-describing. This is intended to simplify ioctl processing
by modules and drivers.

If the message is in response to an M _ COPYIN message and
success is indicated, the M_IOCDATA block will be followed
by M_DATA blocks containing the data copied in.

If an M_IOCDATA block is reused, any unused fields
defined for the resultant message block should be cleared
(particularly in an M_IOCACK or M_IOCNAK).

-

This message should not be queued by a module or driver
unless it intends to process the data for the ioctl in some
way.

M IOCNAK Signals the negative acknowledgement (failure) of a previous
M_IOCTL message. Its form is one M_IOCNAK block con
ta�rung an iocblk data structure (see M_IOCTL). The iocblk
structure may contain a value in ioc _error to be returned to
the user process in errno. Unlike the M _IOCACK, no user
data or return value can be sent with this message. If any
M_DATA blocks follow the M_IOCNAK block, the Stream
head will ignore and free them. When the Stream head
receives an M_IOCNAK, the outstanding ioctl request, if any,
will fail. The format and usage of this message type is
described further under M IOCTL.

M PCPROTO As the M_PROTO message type, except for the priority and
the following additional attributes.

When an M_PCPROTO message is placed on a queue, its ser
vice procedure is always enabled. The Stream head will
allow only one M_PCPROTO message to be placed in its
read queue at a time. If an M_PCPROTO message is already
in the queue when another arrives, the second message is
silently discarded and its message blocks freed.

This message is intended to allow data and control informa
tion to be sent outside the normal flow control constraints.

The getmsg(2) and putmsg(2) system calls refer to
M_PCPROTO messages as high priority messages.

Appendix B : Message Types B-1 9

High Priority Messages

M PCRSE

M PCSIG

M READ

Reserved for internal use. Modules that do not recognize
this message must pass it on. Drivers that do not recognize
it must free it.

As the M_SIG message, except for the priority.

M_PCSIG is often preferable to the M_SIG message espe
cially in tty applications, because M _SIG may be queued
while M _ PCSIG is more guaranteed to get through quickly.
For example, if one generates an M _SIG message when the
DEL (delete) key is hit on the terminal and one has already
typed ahead, the M _SIG message becomes queued and the
user doesn't get the call until it's too late; it becomes impos
sible to kill or interrupt a process by hitting a delete key.

Generated by the Stream head and sent downstream for a
read(2) system call if no messages are waiting to be read at
the Stream head and if read notification has been enabled.
Read notification is enabled with the SO_ MREAOON flag of
the M _ SETOPTS message and disabled by use of the
SO_ MREAOOFF flag.

The message content is set to the value of the nbyte parame
ter (the number of bytes to be read) in the read(2) call.

M _READ is intended to notify modules and drivers of the
occurrence of a read. It is also intended to support commun
ication between Streams that reside in separate processors.
The use of the M _READ message is developer dependent.
Modules may take specific action and pass on or free the
M _READ message. Modules that do not recognize this mes
sage must pass it on. All other drivers may or may not take
action and then free the message.

This message cannot be generated by a user-level process
and should not be generated by a module or driver. It is
always discarded if passed to the Stream head.

M_START and M_STOP

B-20

Request devices to start or stop their output. They are
intended to produce momentary pauses in a device's output,
not to turn devices on or off.

The message format is not defined by STREAMS and its use
is developer dependent. These messages may be considered

Programmer's Gulde: STREAMS

High Priority Messages

special cases of an M _ CTL message. These messages cannot
be generated by a user-level process and each is always dis
carded if passed to the Stream head.

M_STARTI and M_STOPI
As M_START and M_STOP except that M_STARTI and
M _ STOPI are used to start and stop input.

Appendix B: Message Types B-21

·: , · -

:.,-, . ·

(. .. ·

C Appendix C : STREAMS Uti l ities

STREAMS Uti l ities C-1

Uti l ity Descriptions c-3

Table of Contents

• adjmsg - trim bytes in a message C-3
• allocb - allocate a message and data block C-3
• baclcq - get pointer to the queue behind a given queue C-4
• bcanput - test for flow control in the given priority band C-4
• bufcall - recover from failure of allocb C-4
• canput - test for room in a queue C-5
• copyb - copy a message block C-5
• copymsg - copy a message C-6
• datamsg - test whether message is a data message C-6
• dupb - duplicate a message block descriptor C-6
• dupmsg - duplicate a message C-7
• enableok - re-allow a queue to be scheduled for service C-7
• esballoc - allocate message and data blocks C-8
• flushband - flush the messages in a given priority band C-8
• flushq - flush a queue C-8
• freeb - free a single message block C-9
• freemsg - free all message blocks in a message C-9
• getadmin() - return the pointer to the module C-1 0
• getmid - return a module id C-1 0
• getq - get a message from a queue C"1 0
• insq - put a message at a specific place in a queue C-1 1
• linkb - concatenate two messages into one C-1 1
• msgdsize - get the number of data bytes in a message C-1 2
• noenable - prevent a queue from being scheduled C-1 2
• OTHERQ - get pointer to the mate queue C-1 2
• pullupmsg - concatenate and aling bytes in a message C-1 2
• putbq - return a message to the beginning of a queue C-1 3
• putctl - put a control message C-1 3
• putctl1 - put a control message with a one-byte parameter C-1 4
• putnext - put a message to the next queue C-1 4

Table of Contents

II

• putq - put a message on a queue C-1 4
• qenable - enable a queue C-1 5
• qreply - send a message on a Stream in the reverse

direction C-1 6
• qsize - find the number of messages on a queue C-1 6
• RD - get pointer to the read queue C-1 6
• rmvb - remove a message block from a message C-1 6
• rmvq - remove a message from a queue C-1 7
• splstr - set processor level C-1 7
• strlog - submit messages for logging C-1 7
• strqget - obtain information about a queue or band of the

queue C-1 8
• strqset - change information about a queue or band of the

queue C-1 9
• testb - check for an available buffer C-1 9
• unbufcall - cancel a bufcall request C-20
• unlinkb - remove a message block from the head of a

message C-20
• WR - get pointer to the write queue C-20

OKI Interface C-21

Uti l ity Routine Summary c-22

Programmer's Gulde: STREAMS

STREAMS Uti l it ies

This appendix specifies the set of utility routines provided by STREAMS to
assist development of modules and drivers.

The general purpose of the utilities is to perform functions that are commonly
used in modules and drivers. However, some utilities also provide the required
interrupt environment. A utility routine must always be used when operating
on a message queue and when accessing the buffer pool.

Most of these utility routines are contained in either the system source file
io/stream.c or, if they are macros, in <sys/stream.h>. ' The ut

.
i l ity

.
routi�es ciontained in th !s appendix represent an interface that wil l

be maintained in subsequent versions of UN IX® System V. Other than
these utilities (also see the section titled "Accessible Symbols and Func
tions" in Chapter 7), functions contained in the STREAMS kernel code may
change between versions.

Structure definitions are contained in Appendix A. Routine references are found
in this appendix. The following definitions are used:

Blocked A queue that can not be enabled due to flow control.

Enable

Free

Message block (bp)

Message (mp)

Message queue

Queue (q)

Schedule

To schedule a queue's service procedure to run.

To deallocate a STREAMS message or other data struc
ture.

A triplet consisting of an msgb structure, a datab struc
ture, and a data buffer. It is referenced by its type
definition mblk t.

One or more linked message blocks. A message is refer
enced by its first message block.

Zero or more linked messages associated with a queue
(queue structure).

A queue structure. When it appears with "message" in
certain utility description lines, it means "message
queue."

To place a queue on the internal linked list of queues
which will subsequently have their service procedure
called by the STREAMS scheduler.

Appendix C: STREAMS Util ities C-1

STREAMS Utllltles

The word module will generally mean "module and/or driver". The phrase
"next/following module" will generally refer to a module, driver, or Stream
head.

C-2 Programmer's Gulde: STREAMS

Uti l ity Descriptions

The STREAMS utility routines are described below. A summary table is con
tained at the end of this appendix.

adjmsg - trim bytes in a message

int
adjmsg(mp, len)

mblk_t "'mp;
register int len;

adjmsgO trims bytes from either the head or tail of the message specified by mp.
If len is greater than zero, it removes len bytes from the beginning of mp. If len
is less than zero, it removes (-)len bytes from the end of mp. If len is zero,
adjmsgO does nothing.

adjmsgO only trims bytes across message blocks of the same type. It fails if mp
points to a message containing fewer than len bytes of similar type at the mes
sage position indicated.

adjmsgO returns 1 on success and 0 on failure.

allocb - allocate a message and data block

struct msgb "'
allocb(size, pri)

register int size;
uint pri;

allocbO returns a pointer to a message block of type M_DATA, in which the
data buffer contains at least size bytes. pri is one of BPRI_LO, BPRI_MED, or
BPRI _HI and indicates how critically the module needs the buffer. pri is
currently unused and is maintained only for compatibility with applications
developed prior to UNIX® System V Release 4.0. If a block can not be allocated
as requested, allocbO returns a NULL pointer.

When a message is allocated via allocbO the b_band field of the mblk_t is ini
tially set to zero. Modules and drivers may set this field if so desired.

Appendix C: STREAMS Utll ltles C-3

Utility Descriptions

backq - get pointer to the queue behind a given queue

queue_t •
backq(q)

register queue_ t •q;

backq() returns a pointer to the queue behind a given queue. That is, it returns
a pointer to the queue whose q_ next (see queue structure in Appendix A)
pointer is q. If no such queue exists (as when q is at a Stream end), backqO
returns NULL.

bcanput - test for flow control in the given priority band

int
bcanput(q, pri)

register queue_ t •q;
unsigned char pri;

bcanput() provides modules and drivers with a way to test flow control in the
given priority band. It returns 1 if a message of priority pri can be placed on
the queue. It returns 0 if the priority band is flow controlled and sets the
QWANfW flag to zero band (QB_WANfW to nonzero band).

If the band does not yet exist on the queue in question, 1 is returned.

The call bcanput (q, 0) is equivalent to the call canput (q) .

bufcall - recover from failure of allocb

int
bufcall(size, pri, func, arg)

uint size;
int pri;
void (•func)();
long arg;

bufcallO is provided to assist in the event of a block allocation failure. If
allocb() returns NULL, indicating a message block is not currently available,
bufcall() may be invoked.

bufcall() arranges for (*func)(arg) to be called when a buffer of size bytes is avail
able. pri is as described in allocb(). When func is called, it has no user context.

C-4 Programmer's Gulde: STREAMS

Utl llty Descriptions

It cannot reference the u_area and must return without sleeping. bufcallO does
not guarantee that the desired buffer will be available when func is called since
interrupt processing may acquire it.

bufc:all() returns 1 on success, indicating that the request has been successfully
recorded, and 0 on failure. On a failure return, func will never be called. A
failure indicates a (temporary) inability to allocate required internal data struc
tures.

canput - test for room in a queue

int
c:anput(q)

register queue_t "'q;

c:anput() determines if there is room left in a message queue. If q does not have
a service procedure, c:anputO will search further in the same direction in the
Stream until it finds a queue containing a service procedure (this is the first
queue on which the passed message can actually be enqueued). If such a queue
cannot be found, the search terminates on the queue at the end of the Stream.
c:anputO tests the queue found by the search. If the message queue in this
queue is not full, c:anput() returns 1 . This return indicates that a message can be
put to queue q. If the message queue is full, c:anput() returns 0. In this case, the
caller is generally referred to as blocked.

c:anput() only takes into account normal data flow control.

copyb - copy a message block

mblk t •
c:opyb(bp)

register mblk_t •bp;

c:opybO copies the contents of the message block pointed at by bp into a newly
allocated message block of at least the same size. c:opybO allocates a new block
by calling alloc:b(). All data between the b _ rptr and b _ wptr pointers of a mes
sage block are copied to the new block, and these pointers in the new block are
given the same offset values they had in the original message block.

Appendix C: STREAMS Utll ltles C-5

Utlllty Descriptions

On successful completion, copybO returns a pointer to the new message block
containing the copied data. Otherwise, it returns a NULL pointer. The copy is
rounded to full word boundary.

copym.sg - copy a message

mblk t "'
copymsg(bp)

register mblk _ t "'bp;

copymsgO uses copybO to copy the message blocks contained in the message
pointed at by bp to newly-allocated message blocks, and links the new message
blocks to form the new message.

On successful completion, copymsgO returns a pointer to the new message.
Otherwise, it returns a NULL pointer.

datamsg - test whether message is a data message

#define datamsg(type) ((type) == M_DATA 1 1 (type) == M_PROTO 1 1
(type) == M_PCPROTO 1 1 (type) == M_DELAY)

The datamsgO macro returns TRUE if np->b_datap->db_type (where mp is
declared as mblk_t *np) is a data type message (i.e., not a control message). In
this case, a data type is M_DATA, M_PROTO, M_PCPROTO, or M_DELAY. If
np->b_datap->db_type is any other message type, datamsgO returns FALSE.

dupb - duplicate a message block descriptor

mblk t "'
dupb(bp)

register mblk _ t "'bp;

dupb() duplicates the message block descriptor (mblk_t) pointed at by bp by
copying it into a newly allocated message block descriptor. A message block is
formed with the new message block descriptor pointing to the same data block
as the original descriptor. The reference count in the data block descriptor
(dblk_t) is incremented. dupbO does not copy the data buffer, only the mes
sage block descriptor.

C-6 Programmer's Gulde: STREAMS

Uti l ity Descriptions

On successful completion, dupbO returns a pointer to the new message block.
If dupbO cannot allocate a new message block descriptor, it returns NULL.

This routine allows message blocks that exist on different queues to reference
the same data block. In general, if the contents of a message block with a refer
ence count greater than 1 are to be modified, copymsgO should be used to
create a new message block and only the new message block should be
modified. This insures that other references to the original message block are
not invalidated by unwanted changes.

dupmsg - duplicate a message

mblk t •
dupmsg(bp)

register mblk _ t •bp;

dupmsgO calls dupbO to duplicate the message pointed at by bp, by copying all
individual message block descriptors, and then linking the new message blocks
to form the new message. dupmsg() does not copy data buffers, only message
block descriptors.

On successful completion, dupmsgO returns a pointer to the new message. Oth
erwise, it returns NULL.

enableok - re-allow a queue to be scheduled for service

void
enableok(q)

queue_t •q;

enableok() cancels the effect of an earlier noenableO on the same queue q. It
allows a queue to be scheduled for service that had previously been excluded
from queue service by a call to noenableO.

Appendix C: STREAMS Utll ltles C-7

Utlllty Descriptions

esballoc - allocate message and data blocks

mblk t •
esballoc(base, size, pri, fr_ rtn)

unsigned char •base;
int size, pri;
frtn_t •fr_rtn;

esballocO allocates message and data blocks that point directly to a client
supplied buffer. esballocO sets db_base, b_rptr, and b_wptr fields to base (data
buffer size) and db_lim to base + size. The pointer to struct free_rtn is placed in
the db Jreep field of the data block.

The success of esballocO depends on the success of allocb() and that base, size,
and fr _rtn are not NULL, in which case esballocO returns a pointer to a message
block. If an error occurs, esballoc() returns NULL.

flushband - flush the messages in a given priority band

void
flushband(q, pri, flag)

register queue_t •q;
unsigned char pri;
int flag;

flushband() provides modules and drivers with the capability to flush the mes
sages associated in a given priority band. flag is defined the same as in flushq().
If pri is zero, only ordinary messages are flushed. Otherwise, messages are
flushed from the band specified by pri according to the value of flag.

flushq - flush a queue

void
flushq(q, flag)

register queue_t •q;
int flag;

flushqO removes messages from the message queue in queue q and frees them,
using freemsgO. If flag is set to FLUSHDATA, flushq() discards all M_DATA,
M_PROTO, M_PCPROTO, and M_DELAY messages, but leaves all other mes
sages on the queue. If flag is set to FLUSHALL, all messages are removed from
the message queue and freed. FLUSHALL and FLUSHDATA are defined in

C-8 Programmer's Gulde: STREAMS

Uti lity Descriptions

<ays/stream.h>.

If a queue behind q is blocked, flushqO may enable the blocked queue, as
described in putqO.

freeb - free a single message block

void
freeb(bp)

register struct msgb •bp;

freebO will free (deallocate) the message block descriptor pointed at by bp, and
free the corresponding data block if the reference count [see dupbO] in the data
block descriptor (datab structure) is equal to 1 . If the reference count is greater
than 1, freebO will not free the data block, but will decrement the reference
count.

If the reference count is 1 and if the message was allocated by esballocO, the
function specified by the db_frtnp->free_func pointer is called with the
parameter specified by db_frtnp->free_arg.

freeb() can't be used to free a multi-block message [see freemsgO] . Note that
results will be unpredictable if the freebO is called with a null argument. One
should always check that pointer is non-NULL before using freebO.

freemsg - free all message blocks in a message

void
freemsg(bp)

register mblk_t •bp;

freemsg() uses freeb() to free all message blocks and their corresponding data
blocks for the message pointed at by bp.

Appendix C: STREAMS Utll ltles C-9

Utility Descriptions

getadminO - return the pointer to the module

int
(*getadmin(mid))()

ushort mid;

getadminO returns the qadmin pointer to the module identified by mid. It
returns NULL on error.

getmid - return a module id

us ho rt
getmid(name)

char name;

getmidO returns the module id for the module identified by name. It returns 0
on error.

getq - get a message from a queue

mblk t *
getq(q)

register queue_t *q;

getqO gets the next available message from the queue pointed at by q. getqO
returns a pointer to the message and removes that message from the queue. If
no message is queued, getqO returns NULL.

getqO, and certain other utility routines, affect flow control in the Stream as fol
lows: If getqO returns NULL, the queue is marked with QW ANTR so that the
next time a message is placed on it, it will be scheduled for service [enabled, see
qenableO] . If the data in the enqueued messages in the queue drop below the
low water mark, q_lowat, and a queue behind the current queue had previously
attempted to place a message in the queue and failed [i.e., was blocked, see
canputO], then the queue behind the current queue is scheduled for service.

The queue count is maintained on a per-band basis. Priority band 0 (normal
messages) uses q_count, q_lowat, etc. Nonzero priority bands use the fields in
their respective q band structures (qb _count, qb _lowat, etc). All messages appear
on the same list, linked via their b _next pointers.

C-1 0 Programmer's Gulde: STREAMS

Utll lty Descriptions

q_count does not reflect the size of all messages on the queue; it only reflects
those messages in the normal band of flow.

insq - put a message at a specific place in a queue

int
insq(q, emp, mp)

register queue_ t
register mblk_t
register mblk_t

"'q;
"'emp;
"'mp;

insqO places the message pointed at by mp in the message queue contained in
the queue pointed at by q immediately before the already enqueued message
pointed at by emp. If emp is NULL, the message is placed at the end of the
queue. If emp is non-NULL, it must point to a message that exists on the queue
q, or a system panic could result.

If an attempt is made to insert a message out of order in a queue via insqO, the
message will not be inserted and the routine fails.

The queue class of the new message is ignored. However, the priority band of
the new message must adhere to the following ordering:

enp->b_prev->b_band >= mp->b_band >= enp->b_band.

This routine returns 1 on success and 0 on failure.

linkb - concatenate two messages into one

void
linkb(mp, bp)

register mblk_t "'mp;
register mblk_t "'bp;

linkb() puts the message pointed at by bp at the tail of the message pointed at
by mp.

Appendix C: STREAMS Uti l it ies C-1 1

Utility Descriptions

msgdsize - get the number of data bytes in a message

int
msgdsize(bp)

register mblk _ t ""bp;

msgdsize() returns the number of bytes of data in the message pointed at by bp.
Only bytes included in data blocks of type M_DATA are included in the total.

noenable - prevent a queue from being scheduled

void
noenable(q)

queue_t ""q;

noenable() prevents the queue q from being scheduled for service by putqO or
putbqO when these routines enqueue an ordinary priority message, or by insqO
when it enqueues any message. noenable() does not prevent the scheduling of
queues when a high priority message is enqueued, unless it is enqueued by
insq().

OTHERQ - get pointer to the mate queue

#define OTHERQ(q) ((q)->q_flag&QREADR? (q)+1: (q)-1)

The OTHERQO macro returns a pointer to the mate queue of q.

H q is the read queue for the module, it returns a pointer to the module's write
queue. If q is the write queue for the module, it returns a pointer to the read
queue.

pullupmsg - concatenate and aling bytes in a message

int
pullupmsg(mp, len)

register struct msgb ""mp;
register int len;

pullupmsgO concatenates and aligns the first len data bytes of the passed mes
sage into a single, contiguous message block. Proper alignment is hardware-

C-12 Programmer's Gulde: STREAMS

Uti lity Descriptions

dependent. pullupmsgO only concatenates across message blocks of similar
type. It fails if mp points to a message of less than Zen bytes of similar type. If
Zen is -1 pullupmsgO concatenates all the like-type blocks in the beginning of the
message pointed at by mp.

On success, pullupmsgO returns 1 and, as a result of the concatenation, it may
have altered the contents of the message pointed to by mp. On failure, it returns
0.

putbq - return a message to the beginning of a queue

int
putbq(q, bp)

register queue_t •q;
register mblk_t •bp;

putbqO puts the message pointed at by bp at the beginning of the queue
pointed at by q, in a position in accordance with the message type . High prior
ity messages are placed at the head of the queue, followed by priority band
messages and ordinary messages. Ordinary messages are placed after all high
priority and priority band messages, but before all other ordinary messages
already in a queue. The queue will be scheduled in accordance with the same
rules described in putqO. This utility is typically used to replace a message on a
queue from which it was just removed.

A service procedure must never put a high priority message back on its own
queue, as this would result in an infinitive loop.

putbq() returns 1 on success and 0 on failure.

putctl - put a control message

int
putctl(q, type)

queue_t •q;

putctlO creates a control message of type type, and calls the put procedure of
the queue pointed at by q, with a pointer to the created message as an argu
ment. putctl() allocates new blocks by calling allocb().

Appendix C: STREAMS Utllltles C-13

Utlllty Descriptions

On successful completion, putctlO returns 1. It returns 0, if it cannot allocate a
message block, or if type M_DATA, M_PROTO, M_PCPROTO, or M_DELAY
was specified.

putcUl - put a control message with a one-byte parameter

int
putctll(q, type, param)

queue_t •q;

putctllO creates a control message of type type with a one-byte parameter param,
and calls the put procedure of the queue pointed at by q, with a pointer to the
created message as an argument. putctllO allocates new blocks by calling
allocbO.

On successful completion, putctll() returns 1. It returns 0, if it cannot allocate a
message block, or if type M_DATA, M_PROTO, or M_PCPROTO was specified.
M _DELAY is allowed.

putnext - put a message to the next queue

#define putnext(q, mp) ((lt(q)->q_next->q_qinfo->qi_putp)((q)->q_next, (mp)))

The putnextO macro calls the put procedure of the next queue in a Stream and
passes it a message pointer as an argument. q is the calling queue (not the next
queue) and mp is the message to be passed. pu tnextO is the typical means of
passing messages to the next queue in a Stream.

putq - put a message on a queue

int
putq(q, bp)

register queue_t •q;
register mblk_t •bp;

putqO puts the message pointed at by bp on the message queue contained in the
queue pointed at by q and enables that queue. putqO queues messages based
on message queueing priority.

C-14 Programmer's Gulde: STREAMS

Utl llty Descriptions

The priority classes are high priority (type >= QPCTL), priority band (type <
QPCTL && band > 0), and normal (type < QPCTL && band = 0).

putqO always enables the queue when a high priority message is queued.
putqO is allowed to enable the queue (QNOENAB is not set) if the message is
the priority band message, or the QW ANTR flag is set indicating that the ser
vice procedure is ready to read the queue. Note that the service procedure
must never put a priority message back on its own queue, as this would result
in an infinite loop. putqO enables the queue when an ordinary message is
queued if the following condition is set, and enabling is not inhibited by noen
ableO: the condition is set if the module has just been pushed, or if no message
was queued on the last getqO call, and no message has been queued since.

putqO only looks at the priority band in the first message block of a message. If
a high priority message is passed to putqO with a nonzero b _band value, b _band
is reset to 0 before placing the message on the queue. If the message is passed
to putqO with b_band value that is greater than the number of qband structures
associated with the queue, putqO tries to allocate a new qband structure for
each band up to and including the band of the message.

putqO is intended to be used from the put procedure in the same queue in
which the message will be queued. A module should not call putqO directly to
pass messages to a neighboring module. putqO may be used as the qiyutp()
put procedure value in either or both of a module's qinit structures. This effec
tively bypasses any put procedure processing and uses only the module's ser
vice procedure(s).

putqO returns 1 on success and 0 on failure.

qenable - enable a queue

void
qenable(q)

register queue_t "'q;

qenableO places the queue pointed at by q on the linked list of queues that are
ready to be called by the STREAMS scheduler.

Appendix C: STREAMS Uti l it ies C-1 5

Utlllty Descriptions

qreply - send a message on a Stream in the reverse direction

void
qreply(q, bp)

register queue_t ""q;
mblk t ""bp;

qreplyO sends the message pointed at by bp up (or down) the Stream in the
reverse direction from the queue pointed at by q. This is done by locating the
partner of q [see OTHERQ()], and then calling the put procedure of that queue's
neighbor [as in putnextO] . qreplyO is typically used to send back a response
(M_IOCACK or M_IOCNAK message) to an M_IOCTL message.

qsize - find the number of messages on a queue

int
qsize(qp)

register queue_ t "'qp;

qsizeO returns the number of messages present in queue qp. If there are no
messages on the queue, qsizeO returns 0.

RD - get pointer to the read queue

#define RD(q) ((q)-1)

The RD() macro accepts a write queue pointer, q, as an argument and returns a
pointer to the read queue for the same module.

rm.vb - remove a message block from a message

mblk t "'
rmvb(mp, bp)

register mblk_t *mp;
register mblk _ t "'bp;

rmvb() removes the message block pointed at by bp from the message pointed
at by mp, and then restores the linkage of the message blocks remaining in the
message. rmvb() does not free the removed message block. rmvbO returns a
pointer to the head of the resulting message. If bp is not contained in mp,

C-16 Programmer's Gulde: STREAMS

Uti lity Descriptions

rmvbO returns a -1 . If there are no message blocks in the resulting message,
rmvb() returns a NULL pointer.

rmvq - remove a message from a queue

void
rmvq(q, mp)

register queue_t •q;
register mblk_t •mp;

rmvqO removes the message pointed at by mp from the message queue in the
queue pointed at by q, and then restores the linkage of the messages remaining
on the queue. If mp does not point to a message that is present on the queue q,
a system panic could result.

splstr - set processor level

#define splstr() splttyO

splstrO increases the system processor level to block interrupts at a level
appropriate for STREAMS modules and drivers when they are executing critical
portions of their code. splstr() returns the processor level at the time of its invo
cation. Module developers are expected to use the standard kernel function
splx(s), where s is the integer value returned by splstr(), to restore the processor
level to its previous value after the critical portions of code are passed.

strlog - submit messages for logging

int
strlog(mid, sid, level, flags, fmt, argt, ...)

short mid, sid;
char level;
unsigned short flags;
char •fmt;
unsigned argt;

strlog() submits messages containing specified information to the log(7) driver.
Required definitions are contained in <sys/strlog.h> and <sys/log.h>. mid is the
STREAMS module id number for the module or driver submitting the log

Appendix C: STREAMS Util ities C-1 7

Utlllty Descriptions

message. sid is an internal sub-id number usually used to identify a particular
minor device of a driver. level is a tracing level that allows selective screening
of messages from the tracer. flags are any combination of:

• SL_ERROR (the message is for the error logger),

• SL_TRACE (the message is for the tracer),

• SL_FATAL (advisory notification of a fatal error),

• SL_ NOTIFY (request that a copy of the message be mailed to the system
administrator) (Note that SL_ NOTIFY is not an option by itself, but rather
a modifier to the SL_ ERROR flag),

• SL_ CONSOLE (log the message to the console),

• SL_WARN (warning message), and

• SL_ NOTE (notice the message).

fmt is a printf(3S) style format string, except that %s, %e, %E, %g, and %G
conversion specifications are not handled. Up to NLOGARGS numeric or char
acter arguments can be provided. [See log(7).]

strqget - obtain information about a queue or band of the queue

int
strqget(q, what, pri, valp)

register queue_t "'q;
qfields _ t what;
register unsigned char pri;
long "'valp;

strqget() allows modules and drivers to get information about a queue or partic
ular band of the queue. The information is returned in the long referenced by
valp. The fields that can be obtained are defined by the following:

C-18 Programmer's Gulde: STREAMS

typedef enum qfields {
QHIWAT = O ,
QLOWAT = 1 ,
�sz = 2 ,
�NPSZ = 3 ,
QCOUNT = 4 ,
QFIRST = 5 ,
QI.AST = 6 ,
QFLAG = 7 ,
QBAD = 8

qfields_t ;

strqgetO returns 0 on success and an error number on failure.

Uti l ity Descriptions

strqset - change information about a queue or band of the queue

int
strqset(q, what, pri, val)

register queue_ t •q;
qfields_t what;
register unsigned char pri;
long val;

strqset() allows modules and drivers to change information about a queue or
particular band of the queue. The updated information is provided by val. This
routine returns 0 on success and an error number on failure. If the field is
intended to be read-only, then the error EPERM is returned and the field is left
unchanged.

testb - check for an available buffer

int
testb(size, pri)

register size;
uint pri;

testb() checks for the availability of a message buffer of size size without actu
ally retrieving the buffer. testbO returns 1 if the buffer is available, and 0 if no
buffer is available. A successful return value from testbO does not guarantee

Appendix C: STREAMS Uti l ities C-1 9

Utlllty Descriptions

that a subsequent allocbO call will succeed (e.g., in the case of an interrupt rou
tine taking buffers).

pri is as described in allocbO.

unbufcall - cancel a bufcall request

void
unbufcall(id)

register int id;

unbufcall() cancels a bufcall request. id identifies an event in the bufcall
request.

unlinkb - remove a message block from the head of a message

mblk t ,.
unlinkb(bp)

register mblk_t •bp;

unlinkb() removes the first message block pointed at by bp and returns a
pointer to the head of the resulting message. unlinkb() returns a NULL pointer
if there are no more message blocks in the message.

WR - get pointer to the write queue

#define WR(q) ((q)+l)

The WR() macro accepts a read queue pointer, q, as an argument and returns a
pointer to the write queue for the same module.

C-20 Programmer's Gulde: STREAMS

---------------------- Uti lity Descriptions

OKI Interface

With the OKI interface (see Chapter 7), the following STREAMS utilities are
implemented as functions: datamsg, OTHERQ, putnext, RD, splstr, and WR.
<sys/ddi.h> must be included after <sys/stream.h> to get function definitions
instead of the macros.

Appendix C: STREAMS Utll lt les C-21

Uti l ity Routine Su mmary

ROUTINE

adjmsg
allocb
baclcq
bcanput
bufcall
canput
copyb
copymsg
datamsg
dupb
dupmsg
enableok
esballoc
flush band
flushq
freeb
freemsg
getadmin
getmid
getq
insq
linkb
msgdsize
noenable
OTifERQ
pullupmsg
putbq
putctl
putctlt
putnext
putq
qenable
qreply
qsize
RD
rm vb
rmvq
splstr

C·22

DESCRIPTION

trim bytes in a message
allocate a message block
get pointer to the queue behind a given queue
test for flow control in a given priority band
recover from failure of allocb
test for room in a queue
copy a message block
copy a message
test whether message is a data message
duplicate a message block descriptor
duplicate a message
re-allow a queue to be scheduled for service
allocate message and data blocks
flush messages in a given priority band
flush a queue
free a message block
free all message blocks in a message
return a pointer to a module
return the module id
get a message from a queue
put a message at a specific place in a queue
concatenate two messages into one
get the number of data bytes in a message
prevent a queue from being scheduled
get pointer to the mate queue
concatenate and align bytes in a message
return a message to the beginning of a queue
put a control message
put a control message with a one-byte parameter
put a message to the next queue
put a message on a queue
enable a queue
send a message on a Stream in the reverse direction
find the number of messages on a queue
get pointer to the read queue
remove a message block from a message
remove a message from a queue
set processor level

Programmer's Gulde: STREAMS

Utl llty Routine Summary

strlog
strqget
strqset
testb
unbufcall
unlinkb
WR

submit messages for logging
obtain information on a queue or a band of the queue
change information on a queue or a band of the queue
check for an available buffer
cancel bufcall request
remove a message block from the head of a message
get pointer to the write queue

Appendix C: STREAMS Utl l ltles C-23

\

·:, : · , ·

D Append ix D : Debugg ing

Debugging
crash(1 M) Command
Dump Module Example
Error and Trace Logging

Table of Contents

D-1
D-2
D-6
D-1 7

Debugging

This appendix provides some tools to assist in debugging STREAMS-based
applications.

The kernel routine cmn _err() allows printing of formatted strings on a system
console. It displays a specified message on the console and/ or stores it in the
putbuf that is a circular array in the kernel and contains output from cmn _err() .
Its format is:

*include <sys/cmn_err . h>
cmn_err (level, fmt , ARGS)
int level;
char * fmt ;
int ARGS ;

where level can take the following values:

• CE_ CONT - may be used as simple printf(). It is used to continue
another message or to display an informative message not associated with
an error.

• CE_ NOTE - report system events. It is used to display a message pre
ceded with NOTICE:. This message is used to report system events that
do not necessarily require user action, but may interest the system
administrator. For example, a sector on a disk needing to be accessed
repeatedly before it can be accessed correctly might be such an event.

• CE_ WARN - system events that require user action. This is used to
display a message preceded with WARNING:. This message is used to
report system events that require immediate attention, such as those
where if an action is not taken, the system may panic. For example, when
a peripheral device does not initialize correctly, this level should be used.

• CE_ PANIC - system panic. This is used to display a message preceded
with PANIC:. Drivers should specify this level only under the most
severe conditions. A valid use of this level is when the system cannot
continue to function. If the error is recoverable, not essential to continued
system operation, do not panic the system. This level halts all processing.

fmt and ARCS are passed to the kernel routine printf() that runs at splhi() and
should be used sparingly. If the first character of fmt begins with ! (an exclama
tion point) output is directed to putbuf. putbuf can be accessed with the
crash(lM) command. If the destination character begins with A (a caret) output

Appendix D: Debugging D-1

Debugging

goes to the console. If no destination character is specified, the message is
directed to both the putbuf array and the console.

cmn _err() appends each fmt with ''\n", except for the CE_ CONT level, even
when a message is sent to the putbuf array. ARCS specifies a set arguments
passed when the message is displayed. Valid specifications are %s (string), %u
(unsigned decimal), %d (decimal), %0 (octal), and %x (hexadecimal). cmn_err()
does not accept length specifications in conversion specifications. For example,
%3d is ignored.

crash(1 M) Command

The crash(lM) command is used to examine kernel structures interactively. It
can be used on system dump and on active system.

The following lists crash functions related to STREAMS:

D·2

• dbfree - print data block header free list.

• dblock - print allocated Streams data block headers.

• linkblk - print the linkblk table.

• mbfree - print free Streams message block headers.

• mblock - print allocated Streams message block headers.

• pty - print pseudo ttys presently configured. The -1 option gives informa
tion on the line discipline module ldterm, the -h option provides informa
tion on the pseudo-tty emulation module ptem, and the -s option gives
information on the packet module pckt.

• qrun - print a list of scheduled queues.

• queue - print STREAMS queues.

• stream - print the stdata table.

• strstat - print STREAMS statistics.

• tty - print the tty table. The -1 option prints out details about the line dis
cipline module.

Programmer's Gulde: STREAMS

Debugging

The crash functions dblock, linkblk, mblock, queue, and stream take an
optional table entry argument or address that is the address of the data struc
ture. The strstat command gives information about STREAMS event cells and
linkblks in addition to message blocks, data blocks, queues, and Streams. On
the output report, the CONFIG column represents the number of structures
currently configured. It may change because resources are allocated as needed.

The following example is a sample output from crash(tM): ' Output from crash(1 M) may look d ifferent depending on what version of
UN IX System V is used. Examples in the section were produced using ���:. System V Release 3.2, and they were also formatted for easier refer-

Appendix D: Debugging D-3

Debugging

The following example illustrates debugging of a line printer. Knowledge of the
data structures of the driver is needed for debugging. The example starts with
the following data structure of the line printer driver:

D-4 Programmer's Guide: STREAMS

Debugg ing

The first command run lp_lp prints the value and type for the line printer
driver data structure. The second command rd 4 0 2 7 5 7 5 0 2 0 prints 20 values
starting from the location 40275750 (note that the function rd is alias of od).
The third command size queue gives the size of the queue structure. The
next two functions again give the 20 values starting at the specified locations in
the hexadecimal format. The command rd -c 4 0 3 2b f 4 0 3 2 gives the char
acter representation of the value in the given location. The option -x gives a
value in the hexadecimal representation and the option -a produces the same
in the ASCII format.

Appendix D: Debugging D-5

Debugging

Dump Module Example

The following dump module example represents only one way of debugging
STREAMS modules and drivers; using the strlog function is another way.
strlog is discussed later in the chapter.

The dump module (its creator calls it "primitive but handy at times when a
driver is not working properly or some other anomalies occur") has advantages
over logging messages in that it will print all data passing to and from the
module in the order they are received. One can modify this module to print
more detailed information on the particular types of messages (e.g., special
M_IOCTL messages) that a user is interested in.

This dump module is useful for looking at the sequence of messages passing on
a Stream and to know who is doing what and when. For example, if a user is
faced with a situation where a module is not passing through some messages
correctly and user processes are hung waiting the messages to be returned, this
module may help diagnose the problem. Another example is a situation where

D-6 Programmer's Gulde: STREAMS

Debugging

M_IOCTL messages are causing problems in a driver. This module can help to
pinpoint the messages and their sequence without going back to the source of
the programs and trying to figure out what is happening in particular cases.
This module is also useful in debugging inter-module communication protocols
(e.g., M_CTL or M_PROTO between two cooperating modules).

This example should not be used as is for debugging in more than one place.
However, it can be modified quite easily to print minor device numbers along
with each message, so that it can be inserted in two places around a particular
module for looking at both ends of the module simultaneously.

There are two disadvantages in this module approach: this module cannot be
used to debug the console driver, and it drastically alters the timing characteris
tics of the machine and the Stream in which it is running. Therefore, this exam
ple module is not meant to be used for discovering timing-related problems
such as interrupt timing and priority level changes.

The dump module is given here only as an illustration and a possible aid to
developers in debugging their applications. First the appropriate header file is
provided followed by the master file and the code.

Appendix D: Debugging D-7

Debugging

D-8 Programmer's Gulde: STREAMS

Debugg ing

(continued on next page)

Appendix D: Debugging D-9

Debugging

D-1 0 Programmer's Guide: STREAMS

Debugging

Appendix D: Debugging D-1 1

Debugging

D-1 2 Programmer's Gulde: STREAMS

Debugging

Appendix D: Debugging D-1 3

Debugging

(continued on next page)

D-1 4 Programmer's Gulde: STREAMS

Debugg ing

Appendix D: Debugging D-1 5

Debugging

The situation with "cooperating modules" that seems to contradict the basic idea
of reusability and independence of modules has risen in the internationalization
context (see Chapter 12) related to input methods of languages. It turns out that
some back-end processing for input methods can be re-used and the size of the

D-16 Programmer's Gulde: STREAMS

Debugging

kernel reduced from what would be necessary by having two different full
modules when only front-end processing needs to be different for different
input methods. In this situation, one will save as much space as the size of the
back-end module. The way this relates to the dump module is that this dump
module can be used to help debug the protocol between the front-end and
back-end modules. (The protocol is standard across various front-ends.)

Error and Trace Logging

STREAMS error and trace loggers are provided for debugging and for adminis
tering STREAMS modules and drivers. This facility consists of log(7),
strace(lM), strclean(lM) strerr(lM), and the strlog function.

Any module or driver in any Stream can call the STREAMS logging function
strlog, described in log(7). strlog is also described in Appendix C. When
called, strlog will send formatted text to the error logger strerr(lM), the trace
logger strace(lM), or the console logger.

Appendix D: Debugging D-1 7

Debugging

Figure D-1 : Error and Trace Logging

Error
Log File

strerr

I moduk � - -

Trace
Log File

strace

Trace
Messages

Log
Software
Driver

User User

_ _ � driver I

strerr is intended to operate as a daemon process initiated at system startup. A
call to strlog requesting an error to be logged causes an M _PROTO message to
be sent to strerr, which formats the contents and places them in a daily file. The
utility strclean(lM) is provided to purge daily log files that have not been
modified for 3 days.

A call to strlog requesting trace information to be logged causes a similar
M _PROTO message to be sent to strace(lM), which places it in a user desig
nated file. strace is intended to be initiated by a user. The user can designate
the modules/ drivers and severity level of the messages to be accepted for log
ging by strace.

D-1 8 Programmer's Gulde: STREAMS

Debugg ing

A user process can submit its own M_PROTO messages to the log driver for
inclusion in the logger of its choice through putmsg(2). The messages must be
in the same format required by the logging processes and will be switched to
the logger(s) requested in the message.

The output to the log files is formatted, ASCII text. The files can be processed
by standard system commands such as grep(l) or ed(l), or by developer
provided routines.

Append ix D: Debugg ing D-1 9

:1�'}fi ··��.._i.:::� ; ... :··:'··
'."'/

E Append ix E : Configuration

Configuration
Configuring STREAMS Modules and Drivers

• Configuration Examples
• Tunable Parameters

Autopush Facility
• User Interface

Table of Contents

E-1
E-1
E-2
E-5
E-6
E-7

. .,

Configuration

This appendix contains information about configuring STREAMS modules and
drivers into UNIX System V Release 4.0. The information is incremental and
presumes the reader is familiar with the configuration mechanism, which may
vary on different processors. An example of how to configure a driver and a
module is included.

This appendix also includes a list of STREAMS related tunable parameters and
describes the autopush facility.

Configuring STREAMS Modules and Drivers

Each character device that is configured into a UNIX system results in an entry
being placed in the kernel cdevsw table. Entries for STREAMS drivers are also
placed in this table. However, because system calls to STREAMS drivers must
be processed by the STREAMS routines, the configuration mechanism distin
guishes between STREAMS drivers and character device drivers in their associ
ated cdevsw entries.

The distinction is contained in the d _str field of the cdevsw structure. The d _str
field provides the appropriate single entry point for all system calls on
STREAMS files, as shown below:

extern struct cdevsw {

struct streamtab *d _ str;
cdevsw [] ;

The configuration mechanism forms the d _str entry name by appending the
string "info" to the STREAMS driver prefix. The "info" entry is a pointer to a
stream.tab structure (see Appendix A) that contains pointers to the qinit struc
tures for the read and write queues of the driver. The driver must contain the
external definition:

struct streamtab prefixinfo = { . . .

If the d _str entry contains a non-null pointer, the operating system will recog
nize the device as a STREAMS driver and will call the appropriate STREAMS
routine. If the entry is null, a traditional character 1/0 device cdevsw interface
is used. Note that only the stream.tab structure must be externally defined in
STREAMS drivers and modules. The stream.tab is used to identify the

Appendix E: Configuration E-1

Configuration

appropriate open, close, put, service, and administration routines. These driver
and module routines should generally be declared static.

The configuration mechanism supports various combinations of block, character,
STREAMS devices, and STREAMS modules. For example, it is possible to iden
tify a device as a block and STREAMS device (although this is very unlikely),
and entries will be inserted in the appropriate system switch tables.

When a STREAMS module is configured, an fmodsw table entry is generated by
the configuration mechanism. The fmodsw contains the following:

.fdef ine HfiAMESZ 8

extern struct :fm:xisw {
char f_nane [FMNAMF.SZ+l] ;
str:uct strearrt.ab *f_str;
int *f_flag; /* sane as device flag */

} :fm:xisw [1 ;
where /_name is the name of the module used in STREAMS related iocU calls.
f _str is similar to the d_str entry in the cdevsw table. It is a pointer to a stream
tab structure which contains pointers to the qinit structures for the read and
write queues of this STREAMS module (as in STREAMS drivers). The module
must contain the external definition:

struct strearrtab prefixinfo = {

Configuration Examples

This section shows examples of configuring the following STREAMS driver and
module:

loop

cnnod

the STREAMS loop-around software driver of Chapter 9

the conversion module of Chapter 8

To configure the STREAMS software (pseudo device) driver, loop, and assign
values to the driver extern variables, the following must appear in the file
/etc/master.d/loop [see master(4)]:

E-2 Programmer's Gulde: STREAMS

Configuration

* IJX)p - STRE1lMS loop-around software driver
*
*FIAG #VEX:! PREFIX OOET #DEV IPL DEPENDENCIES/VARIABLES
fs loop 62

$$$
NLP = 2

loop_loop [NLP] (%i%i)
loop_cnt (%i) ={NLP}

The flag field is set to "fs" which signifies that it is a STREAMS driver and a
software driver. The prefix "loop" requires that the streamtab structure for the
driver be defined as loopinfo. (The prefix cannot exceed four characters.) "62" is
an arbitrary, software driver major number. If this field contained "-", an
unused software driver major number would be assigned by drvinstall(lM).
The #dev field is "-" which shows that there are no sub-devices. The "-" in the
ipl field indicates that there is no interrupt priority level for this device. The
next field, dependencies/variables, is optional and contains a list of other drivers
and modules that must be present in the configuration of this driver.

To configure the STREAMS module crmod, the following must appear in the file
/etc/master.d/crmod:

* cam stream conversion m::ldule
*
*FIAG #VEX:! PREFIX OOET #DEV IPL DEPENDENCIES/VARIABLES
m cmd

The flag field is set to "m" which signifies that it is a STREAMS module. The
prefix "crmd" (recall that the prefix cannot exceed four characters) requires that
the streamtab structure for the module be defined as crmdinfo. The
configuration mechanism uses the name of the master.d file (crmod in this case)
to create the module name field (/_name) of the associated fmodsw entry. The
prefix and module name can be different. However, the module name should
be the same as the master.d name.

mkboot(lM) should be run on the corresponding object files in the appropriate
directories for these master files. Also, if it is desired to have these objects
loaded at boot time, then the file /stand/system must contain the following
entries:

Appendix E: Configuration E-3

Configuration

INCLUDE : LOOP
INCLUDE : CRM:>D

Neither of the given examples are hardware drivers. Configuring a STREAMS
hardware driver is similar to configuring a character I/0 hardware driver.

At times, it is useful to make a module both a module and a driver. There are
not many good reasons to do so, but in some cases it's a good way to solve odd
problems. It is done in the following way:

We called our module-driver combination thing in this description. First, the
module open routine is handled differently. We also need to keep the state flag
sfl.ag that tells for any particular instantiation whether thing is to behave as a
module or a driver, because ioctl handling is usually different depending on
whether the thing is a driver or a module. Then, we need to make sure that the
flags are set properly in the master file. Here is a sample master file for thing:

*
*FIAG tVEC
fsm

$$$

PREFIX SOFr
can 52

#DEV IPL DEPENDENCIES/VARIABLES

canstr [fCJ (%0x40)
can cnt (%i) ={ tc}

Notice the flag field contains "f' for being a Streams driver, "s" for being a
software driver, and "m" for being a Streams module. We need to do drvinstall
(or mkboot) and make sure that the module has a character device node in the
file system, either as a cloneable driver or a regular driver. Once we have
rebooted our system, thing can be opened by its name ldevlthing, or we can
push it with ioctl (fd, !_PUSH, "thing") .

There is a trick in the open routine where sflag is checked:

E-4 Programmer's Gulde: STREAMS

Configuration

File systems that support STREAMS devices go through cdevsw to get the
driver open routine. If d_str is set, then thing is a STREAMS driver, and it goes
to the fmodsw to get the open routine. When one pushes a Streams module, the
push code also goes to the fmodsw looking for the module by name. Depending
on which way the open routine is called the sflag argument will be MOOOPEN,
CLONEOPEN, or zero.

Tunable Parameters

Certain system parameters referenced by STREAMS are configurable when
building a new operating system (see the System Administrator's Guide for
further details). This can be done by including the appropriate entry in the ker
nel master file. These parameters are:

NSTRPUSH Maximum number (should be at least 8) of modules that may
be pushed onto a single Stream.

STRMSGSZ Maximum number of bytes of information that a single sys
tem call can pass to a Stream to be placed into the data part
of a message (in M_DATA blocks). Any write(2) exceeding
this size will be broken into multiple messages. A putmsg(2)
with a data part exceeding this size will fail with ERANGE.

If STRMSGSZ is set to 0, then the number of bytes passed to
a Stream is effectively infinitive.

Appendix E: Configuration E-5

Configuration

STRCTLSZ

STRTHRESH

Maximum number of bytes of information that a single sys
tem call can pass to a Stream to be placed into the control
part of a message (in an M _PROTO or M _PCPROTO block).
A putmsg(2) with a control part exceeding this size will fail
with ERANGE.

Maximum number of bytes Streams are normally allowed to
allocate. When the threshold is passed, users without the
appropriate privilege will not be allowed to open Streams,
push modules, or write to Streams devices, and ENOSR is
returned. The threshold applies only to output side, thus
data coming into the system (e.g., console) is not affected and
will continue work properly. A value of zero means that
there is no threshold.

Autopush Faci l ity

The Autopush facility [see autopush(lM)] is a general mechanism that
configures the list of modules for a STREAMS device. It automatically pushes a
pre-specified list of modules onto the Stream when the STREAMS device is
opened and the device is not already open.

The STREAMS Administrative Driver (SAD) [see sad(7)] provides an interface to
the autopush mechanism. System administrators can open the SAD driver and
set or get autopush information on other drivers. The SAD driver caches the
list of modules to push for each driver. When the driver is opened, if not
already open, the Stream head checks the SAD's cache to see if the device
opened has been configured to have modules pushed automatically. If an entry
is found, the modules are pushed. If the device has already been opened but
has not yet been closed, another open would not cause the list of the pre
specified modules to be pushed again.

Three options are available to configure the module list:

E-6

• Configure for each minor device - that is, a specific major and minor dev
ice number.

Programmer's Gulde: STREAMS

Configuration

• Configure for a range of minor devices within a major device.

• Configure for all minor devices within a major device.

When the configuration list is cleared, a range of minor devices has to be
cleared as a range and not in parts.

User Interface
The SAD driver can be accessed via the node /dev/sad/admin or /dev/sad/user.
After the device is initialized, a program can be run to perform any needed
autopush configuration. The program should open the SAD driver, read a
configuration file to find out what modules are needed to be configured for
which devices, format the information into strapush structures, and perform the
necessary SAD_ SAP ioctls.

All autopush operations are performed through an ioct1(2} command to set or
get autopush information. Only the superuser may set autopush information,
but any user may get the autopush information for a device.

The ioctl is a form of ioctl (fd, cmd, arg), where fd is the file descriptor of
the SAD driver, cmd is either SAD _SAP (set autopush information) or SAD_ GAP
(get autopush information), and arg is a pointer to the structure strapush.

The structure strapush is defined as:

Appendix E: Configuration E-7

Configuration

A device is identified by its major device number, sap_major. The SAD SAP
ioctl (sap _cmd) can take the following options:

E-8

• SAP_ ONE configures a single minor device, sap_ minor, of a driver.

• SAP_ RANGE configures a range of minor devices from sap_ minor to
sap _lastminor, inclusive.

Programmer's Guide: STREAMS

Configuration

• SAP_ ALL configures all minor devices of a device.

• SAP_ CLEAR clears the previous settings by removing the entry with the
matching sap_major and sap_minor fields.

The list of modules is specified as a list of module names in sap _list. The max
imum number of modules to push automatically is defined by MAXAPUSH.

A user may query the current configuration status of a given major /minor dev
ice by issuing the SAD_ GAP ioctl with sap_ major and sap_ minor values of the
device set. On successful return from this system call, the strapush structure
will be filled in with the corresponding information for that device.

The following is an example of an autopush configuration file:

2 1 5 0 modl mod2 t configure a single minor device

22 -1 0 modO mods mod9 t configure all minor devices for

ma jor 22
39 3 18 mod? t configure a range of minor

devices

The first line represents the configuration for a single minor device whose major
and minor numbers are 21 and 5 respectively. Two modules, mod1 and mod2,
are automatically pushed on the Stream for this minor device. mod1 is pushed
first, and mod2 is pushed next. The second line represents the configuration for
all minor devices whose major number is 22. Three modules, modO, mod5, and
mod9, are pushed automatically on the Stream. The last line represents the
configuration for the range of minor devices from 3 to 18 whose major device
number is 39. Only the module, mod7, is pushed with this configuration.

The maximum number of entries the SAD driver can cache is determined by the
tunable parameter NAUTOPUSH found in the SAD driver's master file.

Appendix E : Configuration E-9

I

:::: :.. ·

."'-_..-

Manual Pages

This appendix has STREAMS related manual pages. The manual pages are
given here for easier reference. Some of them are also included in the appropri
ate sections of the Programmer's Reference Manual or System Administrator's Refer
ence Manual.

The following manual pages are included:

• autopush(1M) - configure automatically pushed STREAMS modules

• fdetach(lM) - detach a name from a STREAMS-based file descriptor

• strace(lM) - print STREAMS trace messages

• strchg(l) - change or query Stream configuration

• strclean(lM) - STREAMS error logger cleanup program

• strerr(lM) - STREAMS error logger daemon

• getmsg(2) - get next message off a Stream

• poll(2) - STREAMS input/ output multiplexing

• putmsg(2) - send a message on a Stream

• fattach(3C) - name (attach) a STREAMS file descriptor

• fdetach(3C) - disassociate a file name from a named Stream

• grantpt(3C) - grant access to the slave pseudo-terminal device

• isastream(3C) - determine if a file descriptor is associated with a
STREAMS device

• ptsname(3C) - get the slave pseudo-terminal device name

• unlockpt(3C) - unlock a pseudo-terminal master/slave pair

• clone(7) - open a major/minor device a STREAMS driver

• connld(7) - gain a unique, non-multiplexed connection to a server

• console(7) - STREAMS-based console interface

• ldterm(7) - standard STREAMS terminal line discipline module

• log(7) - interface to STREAMS error logging and event tracing

Appendix F: Manual Pages F-1

Manual Pages

• pckt(7) - push a PCKT module (packet mode) on the master side

• ports(7) - asynchronous communications interface STREAMS driver

• ptem(7) - process terminal ioctl messages

• sad(7) - STREAMS Administrative Driver

• streamio(7) - STREAMS ioctl commands

• sxt(7) - STREAMS-based pseudo-device driver

• timod(7) - Transport Interface cooperating STREAMS module

• tirdwr(7) - Transport Interface read/write interface STREAMS module

• xt(7) - STREAMS-based multiplexed tty driver

F-2 Programmer's Gulde: STREAMS

autopush (1 M) autopush (1 M)

NAME
autopush - configures lists of automatically pushed STREAMS modules.

SYNOPSIS
autopush -f file
autopush -r -M major -m minor
autopush -g -M major -m minor

DESCRIPTION
This command allows one to configure the list of modules to be automatically
pushed onto the stream when a device is opened. It can also be used to remove
a previous setting or get information on a setting.

The following options apply to autopush:

-f This option sets up the autopush configuration for each driver according
to the information stored in the specified file. An autopush file consists of
lines of at least four fields each where the fields are separated by a space
as shown below:

maj_ min_ last_min_ mod1 m:xi2 • • • m:>dn

The first three fields are integers that specify the major device number, minor
device number, and last minor device number. The fields following represent the
names of modules. If min_ is -1, then all minor devices of a major driver
specified by maj_ are configured and the value for last_min_ is ignored. If
last_min_ is 0, then only a single minor device is configured. To configure a
range of minor devices for a particular major, min_ must be less than last_ min_.

The last fields of a line in the autopush file represent the list of module names
where each is separated by a space. The maximum number of modules that can
be automatically pushed on a stream is defined to be eight. The modules are
pushed in the order they are specified. Comment lines start with a # sign.

-r This option removes the previous configuration setting of the particular
major and minor device number specified with the -M and -m options
respectively. If the values of major and minor correspond to a setting of a
range of minor devices, where minor matches the first minor device
number in the range, the configuration would be removed for the entire
range.

-g This option gets the current configuration setting of a particular major and
minor device number specified with the -M and -m options respectively. It
will also return the starting minor device number if the request
corresponds to a setting of a range (as described with the -f option).

SEE ALSO
streamio(7)
Programmer's Guide: STREAMS

10/89 Page 1

fdetach (1 M) fdetach (1 M)

NAME
fdetach - detach a name from a STREAMS-based file descriptor

SYNOPSIS
fdetach path

DESCRIPTION
The fdetach command detaches a STREAMS-based file descriptor from a name in
the file system. path is the path name of the object in the file system name space,
which was previously attached [see fattach(3C)). The user must be the owner of
the file or a user with the appropriate privileges. All subsequent operations on
path will operate on the file system node and not on the STREAMS file. The per
missions and status of the node are restored to the state the node was in before
the STREAMS file was attached to it.

SEE ALSO

10/89

fattach(3C), fdetach(3C), streamio(7).
Programmer's Guide: STREAMS

Page 1

strace {1 M) strace { 1 M)

NAME
strace - print STREAMS trace messages

SYNOPSIS
strace [mid sid level] . . .

DESCRIPTION
strace without arguments writes all STREAMS event trace messages from all
drivers and modules to its standard output. These messages are obtained from
the STREAMS log driver [log(7)]. If arguments are provided they must be in tri
plets of the form mid, sid, level, where mid is a STREAMS module ID number, sid is
a sub-ID number, and level is a tracing priority level. Each triplet indicates that
tracing messages are to be received from the given module/driver, sub-ID (usu
ally indicating minor device), and priority level equal to or less than the given
level. The token all may be used for any member to indicate no restriction for
that attribute.

The format of each trace message output is:

<.seq> <lime> <ticks> <level> <flags> <mid> <Sid> <text>

<:seq> trace sequence number

<time> time of message in hh:mm:ss

<ticks> time of message in machine ticks since boot

<level> tracing priority level

<flagS> E : message is also in the error log
F : indicates a fatal error

<mid>

<Sid>
<text>

N : mail was sent to the system administrator

module ID number of source

sub-ID number of source

formatted text of the trace message

Once initiated, strace will continue to execute until terminated by the user.

EXAMPLES
Output all trace messages from the module or driver whose module ID is 41 :

strace 4 1 all all

Output those trace messages from driver/module ID 41 with sub-IDs 0, 1, o r 2:

strace 41 O 1 41 1 1 41 2 O

Messages from sub-IDs 0 and 1 must have a tracing level less than or equal to 1 .
Those from sub-ID 2 must have a tracing level of 0.

SEE ALSO
log(7)

NOTES

1 0/89

Programmer's Guide: STREAMS

Due to performance considerations, only one strace process is permitted to open
the STREAMS log driver at a time. The log driver has a list of the triplets
specified in the command invocation, and compares each potential trace message

Page 1

strace (1 M) strace (1 M)

against this list to decide if it should be formatted and sent up to the strace pro
cess. Hence, long lists of triplets will have a greater impact on overall STREAMS
performance. Running strace will have the most impact on the timing of the
modules and drivers generating the trace messages that are sent to the strace
process. If trace messages are generated faster than the strace process can han
dle them, then some of the messages will be lost. This last case can be deter
mined by examining the sequence numbers on the trace messages output.

Page 2 10/89

strchg (1 } strchg (1 }

NAME
strchq, strconf - change or query stream configuration

SYNOPSIS
strchq -h module1 [, module2 • • •]
strchq -p [-a I -u module]
strchq -f file
strconf [-t I -m module]

DESCRIPTION
These commands are used to alter or query the configuration of the stream asso
ciated with the user's standard input. The strchq command pushes modules on
and/or pops modules off the stream. The strconf command queries the
configuration of the stream. Only the super-user or owner of a STREAMS device
may alter the configuration of that stream.

With the -h option, strchq pushes modules onto a stream; it takes as arguments
the names of one or more pushable streams modules. These modules are pushed
in order; that is, module1 is pushed first, module2 is pushed second, etc.

The -p option pops modules off the stream. With the -p option alone, strchg
pops the topmost module from the stream. With the -p and -a options, all the
modules above the topmost driver are popped. When the -p option is followed
by -u module, then all modules above but not including module are popped off the
stream. The -a and -u options are mutually exclusive.

With the -f option, the user can specify a file that contains a list of modules
representing the desired configuration of the stream. Each module name must
appear on a separate line where the first name represents the topmost module
and the last name represents the module that should be closest to the driver. The
strchq command will determine the current configuration of the stream and pop
and push the necessary modules in order to end up with the desired
configuration.

The -h, -f and -p options are mutually exclusive.

Invoked without any arguments, strconf prints a list of all the modules in the
stream as well as the topmost driver. The list is printed with one name per line
where the first name printed is the topmost module on the stream (if one exists)
and the last item printed is the name of the driver. With the -t option, only the
topmost module (if one exists) is printed. The -m option determines if the named
module is present on a stream. If it is, strconf prints the message yes and
returns zero. If not, strconf prints the message no and returns a non-zero value.
The -t and -m options are mutually exclusive.

EXAMPLES

10/89

The following command pushes the module ldterm on the stream associated
with the user's standard input:

strchg -h ldterm
The following command pops the topmost module from the stream associated
with /dev/term/24. The user must be the owner of this device or the super
user.

Page 1

strchg (1) strchg (1)

strchg -p < /dev/term/24

If the file fileconf contains the following:

conpat
ldterm
pt em

then the command

strchg -f fileconf

will configure the user's standard input stream so that the module ptem is
pushed over the driver, followed by ldtenn and conpat closest to the stream
head.

The strconf command with no arguments lists the modules and topmost driver
on the stream; for a stream that has only the module ldterm pushed above the
ports driver, it would produce the following output:

ldterm
ports

The following command asks if ldterm is on the stream

strconf -m ldterm

and produces the following output while returning an exit status of 0:

yes

SEE ALSO
streamio(7) in the Programmer's Guide: STREAMS.

DIAGNOSTICS

NOTES

Page 2

strchg returns zero on success. It prints an error message and returns non-zero
status for various error conditions, including usage error, bad module name, too
many modules to push, failure of an ioctl on the stream, or failure to open file
from the -f option.

strconf returns zero on success (for the -m or -t option, "success" means the
named or topmost module is present). It returns a non-zero status if invoked
with the -m or -t option and the module is not present. It prints an error mes
sage and returns non-zero status for various error conditions, including usage
error or failure of an ioctl on the stream.

If the user is neither the owner of the stream nor the super-user, the strchg com
mand will fail. If the user does not have read permissions on the stream and is
not the super-user, the strconf command will fail.

If modules are pushed in the wrong order, one could end up with a stream that
does not function as expected. For ttys, if the line discipline module is not
pushed in the correct place, one could have a terminal that does not respond to
any commands.

10/89

strclean (1 M)

NAME
strclean - STREAMS error logger cleanup program

SYNOPSIS
strclean [-d logdir] [-a age]

DESCRIPTION

strclean (1 M)

strclean is used to clean up the STREAMS error logger directory on a regular
basis (for example, by using cron. By default, all files with names matching
error . • in /var/adm/streams that have not been modified in the last three days
are removed. A directory other than /var/adm/streams can be specified using
the -d option. The maximum age in days for a log file can be changed using the
-a option.

EXAMPLE
strclean -d /var/adm/streams -a 3

has the same result as running strclean with no arguments.
FILES

/var/adm/streams/error . •

SEE ALSO

NOTES

1 0/89

cron(lM), strerr(lM)
Programmer's Guide: STREAMS

strclean is typically run from cron on a daily or weekly basis.

Page 1

strerr { 1 M) strerr (1 M)

NAME
strerr - STREAMS error logger daemon

SYNOPSIS
strerr

DESCRIPTION

FILES

strerr receives error log messages from the STREAMS log driver [log(7)] and
appends them to a log file. The error log files produced reside in the directory
/var/adm/streams, and are named error . mm-dd, where mm is the month and
dd is the day of the messages contained in each log file.

The format of an error log message is:

<.seq> <time> <ticks> <ff.ags> <mid> <Sid> <text>

<Self> error sequence number

<time> time of message in hh:mm:ss

<ticks> time of message in machine ticks since boot priority level

<ff.ags> T : the message was also sent to a tracing process
F : indicates a fatal error
N : send mail to the system administrator

<mid> module ID number of source

<Sid> sub-ID number of source

<text> formatted text of the error message

Messages that appear in the error log are intended to report exceptional condi
tions that require the attention of the system administrator. Those messages
which indicate the total failure of a STREAMS driver or module should have the F
flag set. Those messages requiring the immediate attention of the administrator
will have the N flag set, which causes the error logger to send the message to the
system administrator via mail. The priority level usually has no meaning in the
error log but will have meaning if the message is also sent to a tracer process.

Once initiated, strerr continues to execute until terminated by the user. It is
commonly executed asynchronously.

/var/ adm/ streams/ error . mm-dd

SEE ALSO

NOTES

1 0/89

log(7)
Programmer's Guide: STREAMS

Only one strerr process at a time is permitted to open the STREAMS log driver.

If a module or driver is generating a large number of error messages, running the
error logger will cause a degradation in STREAMS performance. If a large burst of
messages are generated in a short time, the log driver may not be able to deliver
some of the messages. This situation is indicated by gaps in the sequence
numbering of the messages in the log files.

Page 1

getmsg (2) getmsg (2)

NAME
getmsg - get next message off a stream

SYNOPSIS
tinclude <stropts . h>

int getmsq (int fd, struct strbuf *ctlptr,
struct strbuf *dataptr, int *flaqsp) ;

int getpmsq (int fd, struct strbuf *ctlptr,
struct strbuf *dataptr, int *bandp, int *flaqsp) ;

DESCRIPTION

1 0/89

getmsq retrieves the contents of a message [see intro(2)) located at the stream
head read queue from a STREAMS file, and places the contents into user specified
buffer(s). The message must contain either a data part, a control part, or both.
The data and control parts of the message are placed into separate buffers, as
described below. The semantics of each part is defined by the STREAMS module
that generated the message.
The function qetpmsq does the same thing as qetmsq, but provides finer control
over the priority of the messages received. Except where noted, all information
pertaining to qetmsq also pertains to qetpmsq.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a strbuf structure, which contains the following members:

int maxlen; /* maximum buffer lenqth */
int len; /* lenqth of data */
char *buf; /* ptr to buffer */

buf points to a buffer in which the data or control information is to be placed,
and maxlen indicates the maximum number of bytes this buffer can hold. On
return, len contains the number of bytes of data or control information actually
received, or 0 if there is a zero-length control or data part, or -1 if no data or con
trol information is present in the message. ff.agsp should point to an integer that
indicates the type of message the user is able to receive. This is described later.
ctlptr is used to hold the control part from the message and dataptr is used to
hold the data part from the message. If ctlptr (or dataptr) is NULL or the maxlen
field is - 1, the control (or data) part of the message is not processed and is left on
the stream head read queue. If ctlptr (or dataptr) is not NULL and there is no
corresponding control (or data) part of the messages on the stream head read
queue, len is set to - 1. If the maxlen field is set to 0 and there is a zero-length
control (or data) part, that zero-length part is removed from the read queue and
len is set to 0. If the maxlen field is set to 0 and there are more than zero bytes
of control (or data) information, that information is left on the read queue and
len is set to 0. If the maxlen field in ctlptr or dataptr is less than, respectively, the
control or data part of the message, maxlen bytes are retrieved. In this case, the
remainder of the message is left on the stream head read queue and a non-zero
return value is provided, as described below under DIAGNOSTICS.

Page 1

getmsg {2) getmsg {2)

By default, qetmsg processes the first available message o n the stream head read
queue. However, a user may choose to retrieve only high priority messages by
setting the integer pointed by flagsp to RS_HIPRI. In this case, qetmsg processes
the next message only if it is a high priority message. If the integer pointed by
flagsp is 0, qetmsg retrieves any message available on the stream head read
queue. In this case, on return, the integer pointed to by flagsp will be set to
RS_ HIPRI if a high priority message was retrieved, or 0 otherwise.
For getpmsg, the flags are different. flagsp points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI , MSG_BAND, and MSG_ANY. Like
getmsg, getpmsg processes the first available message on the stream head read
queue. A user may choose to retrieve only high-priority messages by setting the
integer pointed to by flagsp to MSG_ HIPRI and the integer pointed to by bandp to
0. In this case, getpmsg will only process the next message if it is a high-priority
message. In a similar manner, a user may choose to retrieve a message from a
particular priority band by setting the integer pointed to by flagsp to MSG_ BAND
and the integer pointed to by bandp to the priority band of interest. In this case,
getpmsg will only process the next message if it is in a priority band equal to, or
greater than, the integer pointed to by bandp, or if it is a high-priority message. If
a user just wants to get the first message off the queue, the integer pointed to by
flagsp should be set to MSG_ ANY and the integer pointed to by bandp should be set
to 0. On return, if the message retrieved was a high-priority message, the integer
pointed to by flagsp will be set to MSG_HIPRI and the integer pointed to by bandp
will be set to 0. Otherwise, the integer pointed to by flagsp will be set to
MSG_BAND and the integer pointed to by bandp will be set to the priority band of
the message.

Page 2

If O_NDELAY and O_NONBLOCK are clear, getmsg blocks until a message of the type
specified by flagsp is available on the stream head read queue. If O_NDELAY or
o _ NONBLOCK has been set and a message of the specified type is not present on
the read queue, qetmsg fails and sets errno to EAGAIN.
If a hangup occurs on the stream from which messages are to be retrieved,
getmsg continues to operate normally, as described above, until the stream head
read queue is empty. Thereafter, it returns 0 in the len fields of ctlptr and
dataptr.

getmsg or getpmsg will fail if one or more of the following are true:

EAGAIN The 0 _ NDELAY or 0 _ NONBLOCK flag is set, and no messages are
available.

EBADF fd is not a valid file descriptor open for reading.
EBADMSG

EFAULT

EINTR

EINVAL

Queued message to be read is not valid for getmsg.

ctlptr, dataptr, bandp, or flagsp points to a location outside the allo
cated address space.
A signal was caught during the getmsg system call.
An illegal value was specified in flagsp, or the stream referenced
by fd is linked under a multiplexor.

10/89

getmsg (2) getmsg (2)

ENOS TR A stream is not associated with fd.
9etms9 can also fail if a STREAMS error message had been received at the stream
head before the call to 9etms9. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
intro(2), poll(2), putmsq(2), read(2), write(2).
Programmer's Guide: STREAMS.

DIAGNOSTICS

10/89

Upon successful completion, a non-negative value is returned. A value of 0 indi
cates that a full message was read successfully. A return value of M:>RECTL indi
cates that more control information is waiting for retrieval. A return value of
M'.>REDATA indicates that more data are waiting for retrieval. A return value of
M'.>RECTL I M'.>REDATA indicates that both types of information remain. Subse
quent 9etms9 calls retrieve the remainder of the message. However, if a message
of higher priority has come in on the stream head read queue, the next call to
qetmsq will retrieve that higher priority message before retrieving the remainder
of the previously received partial message.

Page 3

poll (2} poll (2)

NAME
poll - input/output multiplexing

SYNOPSIS
tinclude <stropts . h>
tinclude <poll . h>

int poll (struct poll *fds , size_t nfds , int timeout) ;

DESCRIPTION

1 0/89

poll provides users with a mechanism for multiplexing input/output over a set
of file descriptors that reference open files. poll identifies those files on which a
user can send or receive messages, or on which certain events have occurred.

fds specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one element for each open file
descriptor of interest. The array's elements are pollfd structures, which contain
the following members:

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

fd specifies an open file descriptor and events and revents are bitmasks con
structed by an OR of any combination of the following event flags:

FOLLIN Data other than high priority data may be read without blocking.

POLLRDNORM

POLLRDBAND

POLLPRI

POLLOUT

POLLWRNORM

POLLWRBAND

POLIM.gG

POLI.ERR

POLLHUP

For STREAMS, this flag is set even if the message is of zero
length.

Normal data (priority band = 0) may be read without blocking.
For STREAMS, this flag is set even if the message is of zero
length.

Data from a non-zero priority band may be read without block
ing For STREAMS, this flag is set even if the message is of zero
length.

High priority data may be received without blocking. For
STREAMS, this flag is set even if the message is of zero length.

Normal data may be written without blocking.

The same as POLI.OUT.

Priority data (priority band > 0) may be written. This event only
examines bands that have been written to at least once.

An M_SIG or M_PCSIG message containing the SIGPOLL signal
has reached the front of the stream head read queue.

An error has occured on the device or stream. This flag is only
valid in the revents bitmask; it is not used in the events field.

A hangup has occurred on the stream. This event and POLI.OUT
are mutually exclusive; a stream can never be writable if a
hangup has occurred. However, this event and FOLLIN,
POLLRDNORM, POLLRDBAND, or POLLPRI are not mutually

Page 1

poll (2} poll (2}

POLLNVAL

exclusive. This flag is only valid in the revents bitmask; it is
not used in the events field.

The specified fd value does not belong to an open file. This flag
is only valid in the revents field; it is not used in the events
field.

For each element of the array pointed to by fds, poll examines the given file
descriptor for the event(s) specified in events. The number of file descriptors to
be examined is specified by nfds.

If the value fd is less than zero, events is ignored and i:events is set to 0 in that
entry on return from poll .

The results of the poll query are stored in the revents field in the pollfd struc
ture. Bits are set in the revents bitmask to indicate which of the requested
events are true. If none are true, none of the specified bits are set in revents
when the poll call returns. The event flags POLLHUP, POLI.ERR, and POLLNVAL
are always set in revents if the conditions they indicate are true; this occurs even
though these flags were not present in events.

If none of the defined events have occurred on any selected file descriptor, poll
waits at least timeout milliseconds for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout is rounded up to the nearest legal value available on that system. If the
value timeout is 0, poll returns immediately. If the value of timeout is INFTIM (or
- 1), poll blocks until a requested event occurs or until the call is interrupted.
poll is not affected by the o _ NDELAY and O _ NONBLOCK flags.

poll fails if one or more of the following are true:

EAGAIN Allocation of internal data structures failed, but the request may
be attempted again.

EFAULT

EINTR

Some argument points outside the allocated address space.

A signal was caught during the poll system call.

EINVAL

SEE ALSO

The argument nfds is greater than {OPEN_MAX} .

intro{2), 9etmsg(2), 9etrlimit(2), putmsg(2), read(2), write(2)
Programmer's Guide: STREAMS

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative value is returned. A positive value
indicates the total number of file descriptors that has been selected (i.e., file
descriptors for which the i:events field is non-zero). A value of 0 indicates that
the call timed out and no file descriptors have been selected. Upon failure, a
value of - 1 is returned and errno is set to indicate the error.

1 0/89

putmsg (2} putmsg (2}

NAME
putmsg - send a message on a stream

SYNOPSIS
tinclude <stropts . h>

int putmsg (int fd, const struct stmuf *ctlptr,
const struct strbuf *dataptr, int flags) ;

int putpmsg (int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags) ;

DESCRIPTION

1 0/89

putmsg creates a message from user-specified buffer(s) and sends the message to
a STREAMS file. The message may contain either a data part, a control part, or
both. The data and control parts to be sent are distinguished by placement in
separate buffers, as described below. The semantics of each part is defined by the
STREAMS module that receives the message.

The function putpmsg does the same thing as putmsg, but provides the user the
ability to send messages in different priority bands. Except where noted, all
information pertaining to putmsg also pertains to putpmsg.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a strbuf structure, which contains the following members:

int maxlen;
int len;
void *buf;

/* not used */
I* length of data */
/* ptr to buffer */

ctlptr points to the structure describing the control part, if any, to be included in
the message. The buf field in the strbuf structure points to the buffer where the
control information resides, and the len field indicates the number of bytes to be
sent. The maxlen field is not used in putmsg [see qetmsg(2)] . In a similar
manner, dataptr specifies the data, if any, to be included in the message. flags
indicates what type of message should be sent and is described later.

To send the data part of a message, dataptr must not be NULL and the len field of
dataptr must have a value of 0 or greater. To send the control part of a message,
the corresponding values must be set for ctlptr. No data (control) part is sent if
either dataptr (ctlptr) is NULL or the len field of dataptr (ctlptr) is set to - 1 .

For putmsg(), if a control part is specified, and flags is set to RS_HIPRI, a high
priority message is sent. If no control part is specified, and flags is set to
RS_HIPRI, putmsg fails and sets errno to EINVAL. If flags is set to 0, a normal
(nonj>riority) message is sent. If no control part and no data part are specified,
and flags is set to 0, no message is sent, and 0 is returned.

The stream head guarantees that the control part of a message generated by
putmsg is at least 64 bytes in length.

For putpmsg, the flags are different. flags is a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0,
putpmsg fails and sets errno to EINVAL. If a control part is specified and flags is
set to MSG_HIPRI and band is set to 0, a high-priority message is sent. If flags is

Page 1

putmsg (2} putmsg (2}

Page 2

set to MSG_HIPRI and either no control part is specified or band is set to a non
zero value, putpmsg() fails and sets errno to EINVAL. If flags is set to MSG _BAND,
then a message is sent in the priority band specified by band. If a control part
and data part are not specified and flags is set to MSG BAND, no message is sent
and 0 is returned.

-

Normally, putmsg() will block if the stream write queue is full due to internal
flow control conditions. For high-priority messages, putmsg() does not block on
this condition. For other messages, putmsg() does not block when the write
queue is full and 0 _ NDELAY or 0 _ NONBLOCK is set. Instead, it fails and sets errno
to EAGAIN.

putmsg or putpmsq also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the stream, regardless of priority
or whether 0 _ NDELAY or 0 _NONBLOCK has been specified. No partial message is
sent.

putmsg fails if one or more of the following are true:

EAGAIN A non-priority message was specified, the 0 _ NDELAY or
O _NONBLOCK flag is set and the stream write queue is full due to
internal flow control conditions.

EBADF fd is not a valid file descriptor open for writing.

EFAULT

EINTR

EINVAL

EINVAL

EINVAL

ENO SR

ENOSTR

ENXIO

ctlptr or dataptr points outside the allocated address space.

A signal was caught during the putmsg system call.

An undefined value was specified in flags, or fl.ags is set to
RS_HIPRI and no control part was supplied.

The stream referenced by fd is linked below a multiplexor.

For putpmsg, if fl.ags is set to MSG_ HIPRI and band is nonzero.

Buffers could not be allocated for the message that was to be
created due to insufficient STREAMS memory resources.

A stream is not associated with fd.

A hangup condition was generated downstream for the specified
stream, or the other end of the pipe is closed.

ERANGE The size of the data part of the message does not fall within the
range specified by the maximum and minimum packet sizes of the
topmost stream module. This value is also returned if the control
part of the message is larger than the maximum configured size of
the control part of a message, or if the data part of a message is
larger than the maximum configured size of the data part of a mes
sage.

putmsg also fails if a STREAMS error message had been processed by the stream
head before the call to putmsg. The error returned is the value contained in the
STREAMS error message.

10/89

putmsg (2) putmsg (2)

SEE ALSO
getmsg(2), intro(2), poll(2), putmsg(2), read(2), write(2).
Programmer's Guide: STREAMS.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of,- 1 is
returned and errno is set to indicate the error.

10/89 Page 3

fattach (3C) fattach (3C)

NAME
fattach - attach a STREAMS-based file descriptor to an object in the file system
name space

SYNOPSIS
int fattach (int fildes, const char *path) ;

DESCRIPTION
The fattach routine attaches a STREAMS-based file descriptor to an object in the
file system name space, effectively associating a name with fildes. fildes must be a
valid open file descriptor representing a STREAMS file. path is a path name of an
existing object and the user must have appropriate privileges or be the owner of
the file and have write permissions. All subsequent operations on path will
operate on the STREAMS file until the STREAMS file is detached from the node.
fildes can be attached to more than one path, i.e., a stream can have several names
associated with it.

The attributes of the named stream [see stat(2)), are initialized as follows: the
permissions, user ID, group ID, and times are set to those of path, the number of
links is set to 1, and the size and device identifier are set to those of the streams
device associated with fildes. If any attributes of the named stream are subse
quently changed [e.g., clurod.(2)], the attributes of the underlying object are not
affected.

RETURN VALUE
If successful, fattach returns O; otherwise it returns -1 and sets errno to indicate
an error.

ERRORS

10/89

Under the following conditions, the function fattach fails and sets errno to:

EACCES The user is the owner of path but does not have write permissions
on path or fildes is locked.

EBADF

ENO ENT
ENOTDIR

EINVAL

EPERM

fildes is not a valid open file descriptor.

path does not exist.

A component of a path prefix is not a directory.

fildes does not represent a STREAMS file.

The effective user ID is not the owner of path or a user with the
appropriate privileges.

EBUSY path is currently a mount point or has a STREAMS file descriptor
attached it.

ENAMETOOLONG

ELOOP

The size of path exceeds {PATH_MAX}, or the component of a path
name is longer than {NAME_MAX} while {_POSIX_NO_TRUNC } is in
effect.

Too many symbolic links were encountered in translating path.

Page 1

fattach (3C)

path is a file in a remotely mounted directory.

SEE ALSO
fdetach(1M),fdetach(3C), isastream(3C), streamio(7)
in the Programmer's Guide: STREAMS

Page 2

fattach (3C)

10/89

fdetach (3C) fdetach (3C)

NAME
fdetach - detach a name from a srREAMS-based file descriptor

SYNOPSIS
int fdetach (const char *path) ;

DESCRIPTION
The fdetach routine detaches a STREAMS-based file descriptor from a name in
the file system. path is the path name of the object in the file system name space,
which was previously attached [see fattach(3C)] . The user must be the owner of
the file or a user with the appropriate privileges. All subsequent operations on
path will operate on the file system node and not on the STREAMS file. The per
missions and status of the node are restored to the state the node was in before
the STREAMS file was attached to it.

RETURN VALUE
If successful, fdetach returns O; otherwise it returns -1 and sets errno to indicate
an error.

ERRORS
Under the following conditions, the function fdetach fails and sets errno to:

EPERM The effective user ID is not the owner of path or is not a user with
appropriate permissions.

ENOTDIR A component of the path prefix is not a directory.

ENOENT path does not exist.

EINVAL path is not attached to a STREAMS file.

ENAMETOOLONG
The size of path exceeds {PATH_MAX), or a path name component is
longer than {NAME_MAX} while {_POSIX_NO_TRUNC } is in effect.

ELOOP Too many symbolic links were encountered in translating path.

SEE ALSO

1 0/89

fdetach(lM), fattach(3C), streamio(7).
in the Programmer's Guide: STREAMS

Page 1

grantpt (3C) grantpt (3C)

NAME
grantpt - grant access to the slave pseudo-terminal device

SYNOPSIS
int grantpt (int fildes);

DESCRIPTION
The function grantpt changes the mode and ownership of the slave pseudo
terminal device associated with its master pseudo-terminal counter part. fildes is
the file descriptor returned from a successful open of the master pseudo-terminal
device. A setuid root program [see setuid(2)] is invoked to change the permis
sions. The user ID of the slave is set to the effective owner of the calling process
and the group ID is set to a reserved group. The permission mode of the slave
pseudo-terminal is set to readable, writeable by the owner and writeable by the
group.

RETURN VALUE
Upon successful completion, the function grantpt returns O; otherwise it returns
-1. Failure could occur if fildes is not an open file descriptor, if fildes is not associ
ated with a master pseudo-terminal device, or if the corresponding slave device
could not be accessed.

SEE ALSO
open(2), setuid(2).

ptsname(3C), unlockpt(3C)
in the Programmer's Guide: STREAMS.

1 0/89 Page 1

lsastream (3C)

NAME
isastream - test a file descriptor

SYNOPSIS
int isastream(int fildes) ;

DESCRIPTION

lsastream (3C)

The function isastream() determines if a file descriptor represents a STREAMS

file. fildes refers to an open file.

RETURN VALUE
If successful, isastream() returns 1 if fildes represents a STREAMS file, and 0 if
not. On failure, isastream() returns -1 with errno set to indicate an error.

ERRORS
Under the following conditions, isastream() fails and sets errno to:

EBADF fildes is not a valid open file.

SEE ALSO
streamio(7).
in the Programmer's Guide: STREAMS

10/89 Page 1

ptsname (3C) ptsname (3C)

NAME
ptsname - get name of the slave pseudo-terminal device

SYNOPSIS
#include <stdio . h>

char *ptsname (int fildes);

DESCRIPTION
The function ptsname () returns the name of the slave pseudo-terminal device
associated with a master pseudo-terminal device. fi'ldes is a file descriptor
returned from a successful open of the master device. ptsnameO returns a
pointer to a string containing the null-terminated path name of the slave device of
the form /dev/pts/N, where N is an integer between 0 and 255.

RETURN VALUE
Upon successful completion, the function ptsname() returns a pointer to a string
which is the name of the pseudo-terminal slave device. This value points to a
static data area that is overwritten by each call to ptsname () . Upon failure,
ptsname() returns NULL. This could occur if fildes is an invalid file descriptor or if
the slave device name does not exist in the file system.

SEE ALSO

10/89

open(2), grantpt(3C), ttyname(3C), unlockpt(3C).
Programmer's Guide: STREAMS.

Page 1

unlockpt (3C) unlockpt (3C}

NAME
unlockpt - unlock a pseudo-terminal master I slave pair

SYNOPSIS
int unlockpt (int fildes);

DESCRIPTION
The function unlockptO clears a lock flag associated with the slave pseudo
terminal device associated with its master pseudo-terminal counterpart so that the
slave pseudo-terminal device can be opened. fildes is a file descriptor returned
from a successful open of a master pseudo-terminal device.

RETURN VALUE
Upon successful completion, the function unlockptO returns O; otherwise it
returns -1. A failure may occur if fildes is not an open file descriptor or is not
associated with a master pseudo-terminal device.

SEE ALSO
open(2)

grantpt(3C), ptsname(30
in the Programmer's Guide: STREAMS.

10/89 Page 1

clone (7) clone (7)

NAME
clone - open any major/minor device pair on a STREAMS driver

DESCRIPTION
clone is a STREAMS software driver that finds and opens an unused major/minor
device on another STREAMS driver. The major device number passed to clone
during open corresponds to the clone driver and the minor device number
corresponds to the target driver. Each open results in a separate stream to a pre
viously unused major/minor device.

The clone driver consists solely of an open function. This open function per
forms all of the necessary work so that subsequent system calls [including
close(2)] require no further involvement of clone.

clone will generate an ENXIO error, without opening the device, if the
major/minor device number provided does not correspond to a valid
major/minor device, or if the driver indicated is not a STREAMS driver.

SEE ALSO
log(7).

NOTES

10/89

Programmer's Guide: STREAMS.

Multiple opens of the same major/minor device cannot be done through the
clone interface. Executing stat(2) on the file system node for a cloned device
yields a different result from executing fstat(2) using a file descriptor obtained
from opening the node.

Page 1

connld (7) connld (7)

NAME
connld - line discipline for unique stream connections

DESCRIPTION
connld is a STREAMS-based module that provides unique connections between
server and client processes. It can only be pushed [see streamio(7)) onto one
end of a STREAMS-based pipe that may subsequently be attached to a name in the
file system name space. After the pipe end is attached, a new pipe is created
internally when an originating process attempts to open(2) or creat(2) the file
system name. A file descriptor for one end of the new pipe is packaged into a
message identical to that for the ioctl I_ SENDFD [see streamio(7) I and is
transmitted along the stream to the server process on the other end. The ori
ginating process is blocked until the server responds.

The server responds to the I_SENDFD request by accepting the file descriptor
through the I_RECVFD ioctl message. When this happens, the file descriptor
associated with the other end of the new pipe is transmitted to the originating
process as the file descriptor returned from open(2) or creat(2).

If the server does not respond to the I_ SENDFD request, the stream that the
connld module is pushed on becomes uni-directional because the server will not
be able to retrieve any data off the stream until the I_RECVFD request is issued.
If the server process exits before issuing the I_ RECVE'D request, the open(2) or the
creat(2) system calls will fail and return -1 to the originating process.

When the connld module is pushed onto a pipe, messages going back and forth
through the pipe are ignored by connld.

On success, an open of connld returns 0. On failure, ermo is set to the follow
ing values:

EINVAL A stream onto which connld is being pushed is not a pipe or the
pipe does not have a write queue pointer pointing to a stream head
read queue.

EINVAL

EPIPE

ENOMEM

ENXIO

EAGAIN

The other end of the pipe onto which connld is being pushed is
linked under a multiplexor.

connld is being pushed onto a pipe end whose other end is no
longer there.

An internal pipe could not be created.

An M_HANGUP message is at the stream head of the pipe onto which
connld is being pushed.

ENFILE

SEE ALSO

Internal data structures could not be allocated.

A file table entry could not be allocated.

streamio(7)
Programmer's Guide: STREAMS

1 0/89 Page 1

console (7) console (7)

NAME
console - STREAMS-based console interface

DESCRIPTION

FILES

The file dev/console is the system console and refers to an asynchronous serial
data line originating from the system board.

The file dev/contty refers to a second asynchronous serial data line originating
from the system board.

Both /dev/console and /dev/contty access the STREAMS-based console driver,
which when used in conjunction with the STREAMS line discipline module
ldte:cm, supports the termio(7) and termios(2) processing.

/dev/console
/dev/contty

SEE ALSO

1 0/89

crash(lM), termios(2), ldterm(7), termio(7).
Programmer's Guide: STREAMS.

Page 1

ldterm (7) ldterm (7)

NAME
ldtelll\ - standard STREAMS terminal line discipline module

DESCRIPTION
ldtelll\ is a STREAMS module that provides most of the termio(7) terminal inter
face. This module does not perform the low-level device control functions
specified by flags in the c_cflag word of the termio/termios structure or by
the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word of the
termio/termios structure; those functions must be performed by the driver or
by modules pushed below the ldtenn module. All other termio/termios func
tions are performed by ldterm; some of them, however, require the cooperation
of the driver or modules pushed below ldtenn and may not be performed in
some cases. These include the IXOFF flag in the c_iflag word and the delays
specified in the c_oflag word.

ldtelll\ also handles EUC and multi-byte characters.

The remainder of this section describes the processing of various STREAMS mes
sages on the read- and write-side.

Read-side Behavior
Various types of STREAMS messages are processed as follows:

M BREAK -
When this message is received, either an interrupt signal is generated or
the message is treated as if it were an M _DATA message containing a sin
gle ASCII NUL character, depending on the state of the BRKINT flag.

M DATA This message is normally processed using the standard termio input
processing. If the !CANON flag is set, a single input record ("line") is
accumulated in an internal buffer and sent upstream when a line
terminating character is received. If the !CANON flag is not set, other
input processing is performed and the processed data are passed
upstream.

If output is to be stopped or started as a result of the arrival of charac
ters (usually CNTRL-Q and CNTRL-S), M_STOP and M_START messages are
sent downstream. If the IXOFF flag is set and input is to be stopped or
started as a result of flow-control considerations, M STOP! and M START!
messages are sent downstream.

- -

M_DATA messages are sent downstream, as necessary, to perform echoing.

If a signal is to be generated, an M _FLUSH message with a flag byte of
FLUSHR is placed on the read queue. If the signal is also to flush output,
an M_FLUSH message with a flag byte of FLUSHW is sent downstream.

M_CTL If the size of the data buffer associated with the message is the size of
struct iocblk, ldtenn will perform functional negotiation to deter
mine where the termio(7) processing is to be done. If the command field
of the iocblk structure (ioc_cmd) is set to MC_NO_CANON, the input
canonical processing normally performed on M_DATA messages is dis
abled and those messages are passed upstream unmodified; this is for
the use of modules or drivers that perform their own input processing,
such as a pseudo-terminal in TIOCREMOTE mode connected to a program

1 0/89 Page 1

ldterm (7) ldterm (7)

that performs this processing. If the command is M:: _DO_ CANON, all input
processing is enabled. If the command is M::_PART_CANON, then an
M _DATA message containing a te:cmios structure is expected to be
attached to the original M_CTL message. The ldterm module will exam
ine the if lag, of lag, and !flag fields of the te:cmios structure and
from then on will process only those flags which have not been turned
ON. If none of the above commands are found, the message is ignored;
in any case, the message is passed upstream.

M FLUSH -
The read queue of the module is flushed of all its data messages and all
data in the record being accumulated are also flushed. The message is
passed upstream.

M IOCACK -
The data contained within the message, which is to be returned to the
process, are augmented if necessary, and the message is passed
upstream.

All other messages are passed upstream unchanged.

Write-side Behavior

IOCTLS

Page 2

Various types of STREAMS messages are processed as follows:

M FLUSH -
The write queue of the module is flushed of all its data messages and the
message is passed downstream.

M IOCTL -
The function of this ioctl is performed and the message is passed
downstream in most cases. The TCFLSH and TCXONC ioctls can be per
formed entirely in the ldterm module, so the reply is sent upstream and
the message is not passed downstream.

M _DATA If the OPOST flag is set, or both the XCASE and ICANON flags are set, out
put processing is performed and the processed message is passed down
stream along with any M_DELAY messages generated. Otherwise, the mes
sage is passed downstream without change.

All other messages are passed downstream unchanged.

The following ioctls are processed by the ldterm module. All others are passed
downstream. EUC WSET and EUC WGET are I STR ioctl calls whereas other
ioctls listed here are TRANPARENT-ioctls.

-

TCGETS/TCGETA
The message is passed downstream; if an acknowledgment is seen, the
data provided by the driver and modules downstream are augmented
and the acknowledgement is passed upstream.

TCSETS/TCSETSW/TCSETSF/TCSETA/TCSETAW/TCSETAF
The parameters that control the behavior of the ldterm module are
changed. If a mode change requires options at the stream head to be
changed, an M_SETOPTS message is sent upstream. If the ICANON flag is
turned on or off, the read mode at the stream head is changed to

10/89

ldtarm (7) ldtarm (7)

message-nondiscard or byte-stream mode, respectively. If the TOSTOP
flag is turned on or off, the tostop mode at the stream head is turned on
or off, respectively.

TCFLSH If the argument is 0, an M_FLUSH message with a flag byte of FLUSHR is
sent downstream and placed on the read queue. If the argument is 1,
the write queue is flushed of all its data messages and an M _FLUSH mes
sage with a flag byte of FLUSHW is sent upstream and downstream. If the
argument is 2, the write queue is flushed of all its data messages and an
M _FLUSH message with a flag byte of FLUSHRW is sent downstream and
placed on the read queue.

TCXONC If the argument is 0 and output is not already stopped, an M_STOP mes
sage is sent downstream. If the argument is 1 and output is stopped, an
M_START message is sent downstream. If the argument is 2 and input is
not already stopped, an M_STOPI message is sent downstream. If the
argument is 3 and input is stopped, an M _ STARTI message is sent down
stream.

TCSBRK The message is passed downstream, so the driver has a chance to drain
the data and then send and an M_IOCACK message upstream.

EUC WSET -
This call takes a pointer to an eucioc structure, and uses it to set the
EUC line discipline's local definition for the code set widths to be used
for subsequent operations. Within the stream, the line discipline may
optionally notify other modules of this setting via M_CTL messages.

EUC WGET -
This call takes a pointer to an eucioc structure, and returns in it the EUC

code set widths currently in use by the EUC line discipline.

SEE ALSO

1 0/89

termios(2), console(7), ports(7), termio(7).
Programmer's Guide: STREAMS.

Page 3

log (7) log (7)

NAME
log - interface to STREAMS error logging and event tracing

DESCRIPTION
log is a STREAMS software device driver that provides an interface for console
logging and for the STREAMS error logging and event tracing processes
(strerr(lM), strace(lM)). log presents two separate interfaces: a function call
interface in the kernel through which STREAMS drivers and modules submit log
messages; and a subset of ioctl(2) system calls and STREAMS messages for
interaction with a user level console logger, an error logger, a trace logger, or
processes that need to submit their own log messages.

Kernel Interface
log messages are generated within the kernel by calls to the function strlog:

strlog (mid, sid, level, flags, fmt, argl , . . .)
short mid, sid;
char level;
ushort flags;
char *fmt;
unsigned argl ;

Required definitions are contained in <sys/strlog . h>, <sys/log. h>, and
<sys/syslog. h>. mid is the STREAMS module id number for the module or
driver submitting the log message. sid is an internal sub-id number usually used
to identify a particular minor device of a driver. level is a tracing level that
allows for selective screening out of low priority messages from the tracer. flags
are any combination of SL_ERROR (the message is for the error logger), SL_TRACE
(the message is for the tracer), SL_CONSOLE (the message is for the console
logger), SL_FATAL (advisory notification of a fatal error), and SL_NOTIFY (request
that a copy of the message be mailed to the system administrator) . fmt is a
printf (3S) style format string, except that %s, %e, %E, %g, and %G conversion
specifications are not handled. Up to NLOGARGS (currently 3) numeric or charac
ter arguments can be provided.

User Interface

1 0/89

log is opened via the clone interface, /dev/log. Each open of /dev/log obtains
a separate stream to log. In order to receive log messages, a process must first
notify log whether it is an error logger, trace logger, or console logger via a
STREAMS I_STR ioctl call (see below). For the console logger, the I_STR ioctl
has an ic_cmi field of I_CONSLOG, with no accompanying data. For the error
logger, the I_ STR ioctl has an ic _ cmi field of I_ ERRLOG, with no accompanying
data. For the trace logger, the ioctl has an ic_cmi field of I_TRCLOG, and must
be accompanied by a data buffer containing an array of one or more struct
trace_ids elements. Each trace_ids structure specifies an mid, sid, and level
from which message will be accepted. strlog will accept messages whose mid
and sid exactly match those in the trace_ids structure, and whose level is less
than or equal to the level given in the trace_ids structure. A value of -1 in any
of the fields of the trace_ids structure indicates that any value is accepted for
that field.

Page 1

log (7) log (7)

Once the logger process has identified itself via the ioctl call, log will begin
sending up messages subject to the restrictions noted above. These messages are
obtained via the getmsq (2) system call. The control part of this message con
tains a log_ctl structure, which specifies the mid, sid, level, flags, time in ticks
since boot that the message was submitted, the corresponding time in seconds
since Jan. 1, 1970, a sequence number, and a priority. The time in seconds since
1970 is provided so that the date and time of the message can be easily com
puted, and the time in ticks since boot is provided so that the relative timing of
log messages can be determined.

The priority is comprised of a priority code and a facility code, found in
<sys/ syslog . h>. If SL_ CX>NSOLE is set in flags, the priority code is set as follows.
If SL_WARN is set, the priority code is set to LOG_WARNING. If SL_FATAL is set, the
priority code is set to LOG_ CRIT. If SL_ ERROR is set, the priority code is set to
LOG_ERR. If SL_NOTE is set, the priority code is set to LOG_NOTICE. If SL_TRACE
is set, the priority code is set to LOG _DEBUG. If only SL CONSOLE is set, the prior
ity code is set to LOG_ INFO. Messages originating from the kernel have the facility
code set to LOG_I<ERN. Most messages originating from user processes will have
the facility code set to LOG_ USER.

Different sequence numbers are maintained for the error and trace logging
streams, and are provided so that gaps in the sequence of messages can be deter
mined (during times of high message traffic some messages may not be delivered
by the logger to avoid hogging system resources) . The data part of the message
contains the unexpanded text of the format string (null terminated), followed by
NLOGARGS words for the arguments to the format string, aligned on the first word
boundary following the format string.

A process may also send a message of the same structure to log, even if it is not
an error or trace logger. The only fields of the log_ctl structure in the control
part of the message that are accepted are the level, flags, and pri fields; all other
fields are filled in by log before being forwarded to the appropriate logger. The
data portion must contain a null terminated format string, and any arguments
(up to NLOGARGS) must be packed one word each, on the next word boundaty" fol
lowing the end of the format string.

ENXIO is returned for I_TRCLOG ioctls without any trace_ids structures, or for
any unrecognized I_STR ioctl calls. Incorrectly formatted log messages sent to
the driver by a user process are silently ignored (no error results).

Processes that wish to write a message to the console logger may direct their out
put to /dev/conslog, using either write(2) or putmsg(2) .

EXAMPLES
Example of I_ERRLOG notification.

struct. strioctl ioc;

ioc . ic end = I ERRLOG;
ioc . ic

-
tinDut ;;;; 0 ; /* default timeout (15 secs .) */

ioc . ic
-

len = 0 ;
ioc . ic:dp = NULL;

Page 2 10/89

log (7)

FILES

ioctl (log, I_STR, &ioc) ;

Example of I_TRCLOG notification.

struct trace_ids tid [2] ;

tid [O] . ti mid = 2 ;
tid [O] . ti

-
sid = 0 ;

tid [OJ . ti:level = 1 ;

tid [l] . ti mid = 1002 ;
tid [l] . ti

-
sid = -1 ; /* any sub-id will be allowed */

tid [l] . ti:level = -1 ; /* any level will be allowed */

ioc . ic end = I TRCLOG;
ioc . ic

-
timout ;;;; 0;

ioc . ic
-

len = 2 * sizeof (struct trace ids) ;
ioc . ic:dp =- (char *) tid;

-

ioctl (log, I_STR, &ioc) ;

Example of submitting a log message (no arguments).

struct strbuf ctl, dat;
struct log ctl le;
char *message = "Don' t forget to pick up some milk

on the way home " ;

ctl . len = ctl . maxlen = sizeof (lc) ;
ctl .buf = (char *) ≤

dat . len = dat .maxlen = strlen (message) ;
dat . buf = message;

le . level = O ;
le . flags = SL_ERROR I SL_NOTIFY;

putmsg (log, &ctl, &dat, 0) ;

/dev/log
/dev/conslog
<sys/log . h>
<sys/strlog. h>
<sys/syslog . h>

log (7)

SEE ALSO

1 0/89

strace(lM), strerr(lM), getmsg(2), intro(2), putmsg(2), write(2), clone(7).
Programmer's Guide: STREAMS.

Page 3

pckt {7) pckt {7)

NAME
pckt - STREAMS Packet Mode module

DESCRIPTION
pckt is a STREAMS module that may be used with a pseudo terminal to packetize
certain messages. The pckt module should be pushed [see !_PUSH,
streamio(7)] onto the master side of a pseudo terminal.

Packetizing is performed by prefixing a message with an M _PROTO message. The
original message type is stored in the 4 byte data portion of the M _PROTO mes
sage.

On the read-side, only the M_PROTO, M_PCPROTO, M_STOP , M_START, M_STOPI,
M_STARTI, M_IOCTL, M_DATA, M_FLUSH, and M_READ messages are packetized.
All other message types are passed upstream unmodified.

Since all unread state information is held in the master's stream head read queue,
flushing of this queue is disabled.

On the write-side, all messages are sent down unmodified.

With this module in place, all reads from the master side of the pseudo terminal
should be performed with the getmsg(2) or getpmsg() system call. The control
part of the message contains the message type. The data part contains the actual
data associated with that message type. The onus is on the application to
separate the data into its component parts.

SEE ALSO

1 0/89

crash(lM), getmsg(2), ioctl(2),
ldte:cm(7), pten(7), streamio(7), termio(7).
Programmer's Guide: STREAMS.

Page 1

ports (7) ports (7)

NAME
ports - 5 line asynchronous communications interface STREAMS driver

DESCRIPTION

FILES

ports is a STREAMS-based driver that supports a five line asynchronous interface.
Each device supports 4 RS232 lines and one parallel Centronics interface.

When used in conjuction with the STREAMS line discipline module, ldterm,
behavior on all lines is as described in termio(7).

/dev/term/?? serial interface
/dl!v/lp? parallel interface

SEE ALSO

1 0/89

crash(lM), ldterm(7), termio(7).
Programmer's Guide: STREAMS

Page 1

ptem (7) ptem (7)

NAME
ptem - STREAMS Pseudo Terminal Emulation module

DESCRIPTION

FILES

ptem is a STREAMS module that when used in conjunction with a line discipline
and pseudo terminal driver emulates a terminal.

The ptem module must be pushed [see I_PUSH, streamio(7)] onto the slave side
of a pseudo terminal STREAM, before the ldterm module is pushed.

On the write-side, the TCSETA, TCSETAF, TCSETAW, TCGETA, TCSETS ,
TCSETSW, TCSETSF, TCGETS, TCSBRK, JWINSIZE, TIOCGWINSZ, and
TIOCSWINSZ termio ioctl(2) messages are processed and acknowledged. A
hang up (i.e. stty 0) is converted to a zero length M _DATA message and passed
downstream. Termio cflags and window row and column information are
stored locally one per stream. M_DELAY messages are discarded. All other mes
sages are passed downstream unmodified.

On the read-side all messages are passed upstream unmodified with the follow
ing exceptions. All M_READ and M_DELAY messages are freed in both directions.
An ioctl TCSBRK is converted to an M_BREAK message and passed upstream and
an acknowledgement is returned downstream. An ioctl TIOCSIGNAL is con
verted into an M_PCSIG message, and passed upstream and an acknowledgement
is returned downstream. Finally an ioctl TIOCREM>TE is converted into an
M _ CTL message, acknowledged, and passed upstream.

<sys/ptem. h>
SEE ALSO

10/89

stty(l), crash(lM), ioctl(2), ldtenn(7), pckt(7), streamio(7), termio(7)
Programmer's Guide: STREAMS.

Page 1

sad (7} sad (7}

NAME
sad - STREAMS Administrative Driver

SYNOPSIS
finclude <sys/types . h>
tinclude <sys/conf . h>
finclude <sys/sad . h>
tinclude <sys/stropts . h>

int ioctl (fildes, comnand, arg) ;
int fildes , cannand;

DESCRIPTION
The STREAMS Administrative Driver provides an interface for applications to per
form administrative operations on STREAMS modules and drivers. The interface
is provided through ioctl(2) commands. Privileged operations may access the
sad driver via /dev/sad/admin. Unprivileged operations may access the sad
driver via /dev/sad/user.

fildes is an open file descriptor that refers to the sad driver. command determines
the control function to be performed as described below. arg represents addi
tional information that is needed by this command. The type of arg depends
upon the command, but it is generally an integer or a pointer to a command
specific data structure.

COMMAND FUNCTIONS

1 0/89

The autopush facility [see autopush(lM)] allows one to configure a list of
modules to be automatically pushed on a stream when a driver is first opened.
Autopush is controlled by the next commands.

SAD_ SAP Allows the administrator to configure the autopush information for
the given device. arg points to a strapush structure which con
tains the following members:

uint sap crnd;
long sap

-
major;

long sap
-

minor;
long sap

-
lastminor;

long sap
-

npush;
uint sap::::list [MAXAPUSH] [FMNAMESZ + l] ;

The sap_ crnd field indicates the type of configuration being done.
It may take on one of the following values:

SAP ONE Configure one minor device of a driver.

SAP RANGE Configure a range of minor devices of a driver.

SAP ALL Configure all minor devices of a driver.

SAP_CLEAR Undo configuration information for a driver.

The sap_major field is the major device number of the device to be
configured. The sap_ minor field is the minor device number of
the device to be configured. The sap_ lastminor field is used only
with the SAP_RANGE command, with which a range of minor

Page 1

sad (7)

SAD_GAP

Page 2

sad (7)

devices between sap minor and sap lastminor, inclusive, are to
be configured. The minor fields have

-
no meaning for the SAP_ALL

command. The sap _npush field indicates the number of modules
to be automatically pushed when the device is opened. It must be
less than or equal to MAXAPUSH, defined in sad . h. It must also be
less than or equal to NSTRPUSH, the maximum number of modules
that can be pushed on a stream, defined in the kernel master file.
The field sap_ list is an array of module names to be pushed in
the order in which they appear in the list.

When using the SAP_ CLEAR command, the user sets only
sap_major and sap_minor. This will undo the configuration infor
mation for any of the other commands. If a previous entry was
configured as SAP_AIL, sap_minor should be set to zero. If a
previous entry was configured as SAP_RANGE, sap_]llinor should
be set to the lowest minor device number in the range configured.

On failure, errno is set to the following value:

EFADLT arg points outside the allocated address space.

EINVAL

ENOS TR

EEXIST

ERANGE

EN OD EV

ENO SR

The major device number is invalid, the number of
modules is invalid, or the list of module names is
invalid.

The major device number does not represent a
STREAMS driver.

The major-minor device pair is already configured.

The command is SAP RANGE and sap lastminor is
not greater than sap_ minor, or the command is
SAP_ CLEAR and sap_ minor is not equal to the first
minor in the range.

The command is SAP CLEAR and the device is not
configured for autopuSh.

An internal autopush data structure cannot be allo
cated.

Allows any user to query the sad driver to get the autopush
�nfiguration information for a given device. arg points to a stra
push structure as described in the previous command.

The user should set the sap major and sap minor fields of the
strapush structure to the

-
major and minor device numbers,

respectively, of the device in question. On return, the strapush
structure will be filled in with the entire information used to
configure the device. Unused entries in the module list will be
zero-filled.

On failure, errno is set to one of the following values:

1 0/89

sad (7)

SAD_VML

EFAULT

EINVAL

ENOS TR

ENODEV

sad (7)

arg points outside the allocated address space.

The major device number is invalid.

The major device number does not represent a
STREAMS driver.

The device is not configured for autopush.

Allows any user to validate a list of modules (i.e., to see if they are
installed on the system.) arg is a pointer to a str _list structure
with the following members:

int
struct str mlist

sl ruoods ;
*sl_IOOdlist;

The str _ mlist structure has the following member:

char l_name [FMNAMESZ+l] ;

sl nlOOds indicates the number of entries the user has allocated in
the array and sl_IOOdlist points to the array of module names.
The return value is 0 if the list is valid, 1 if the list contains an
invalid module name, or -1 on failure. On failure, errno is set to
one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL The sl nlOOds field of the str list structure is less
than or-equal to zero. -

SEE ALSO
intro(2), ioct1(2), open(2).
Programmer's Guide: STREAMS.

DIAGNOSTICS

1 0/89

Unless specified otherwise above, the return value from ioctl is 0 upon success
and -1 upon failure with errno set as indicated.

Page 3

streamlo (7) streamlo (7)

NAME
streamio - STREAMS ioctl commands

SYNOPSIS
tinclude <sys/types . h>
tinclude <stropts . h>

int ioctl (int fildes , int carmand, . . . / * arq */) ;

DESCRIPTION
STREAMS [see intro(2)) ioctl commands are a subset of the ioctl(2) system
calls which perform a variety of control functions on streams.

ffldes is an open file descriptor that refers to a stream. command determines the
control function to be performed as described below. arg represents additional
information that is needed by this command. The type of arg depends upon the
command, but it is generally an integer or a pointer to a command-specific data
structure. The command and arg are interpreted by the stream head. Certain com
binations of these arguments may be passed to a module or driver in the stream.

Since these STREAMS commands are a subset of ioctl, they are subject to the
errors described there. In addition to those errors, the call will fail with errno
set to EINVAL, without processing a control function, if the stream referenced by
fildes is linked below a multiplexor, or if command is not a valid value for a
stream.

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In
this case, the module or driver sends an error message to the stream head con
taining an error value. This causes subsequent system calls to fail with errno set
to this value.

COMMAND FUNCTIONS

1 0/89

The following ioctl commands, with error values indicated, are applicable to all
STREAMS files:

I PUSH

I POP

Pushes the module whose name is pointed to by arg onto the top
of the current stream, just below the stream head. If the stream is
a pipe, the module will be inserted between the stream heads of
both ends of the pipe. It then calls the open routine of the newly
pushed module. On failure, errno is set to one of the following
values:

EINVAL

EFAULT

ENXIO

ENXIO

Invalid module name.

arg points outside the allocated address space.

Open routine of new module failed.

Hangup received on fildes.

Removes the module just below the stream head of the stream
pointed to by fildes. To remove a module from a pipe requires that
the module was pushed on the side it is being removed from. arg
should be 0 in an I_POP request. On failure, errno is set to one of
the following values:

Page 1

streamlo (7) stream lo (7)

Page 2

I LOOK

I FLUSH

I FLUSHBAND

EINVAL

ENXIO

No module present in the stream.

Hangup received on fildes.

Retrieves the name of the module just below the stream head of the
stream pointed to by fildes, and places it in a null terminated char
acter string pointed at by arg. The buffer pointed to by arg should
be at least FMNAMESZ+ 1 bytes long. An (#include
<sys/conf . h>) declaration is required. On failure, errno is set to
one of the following values:

EFADLT arg points outside the allocated address space.

EINVAL No module present in stream.

This request flushes all input and/or output queues, depending on
the value of arg. Legal arg values are:

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

If a pipe or FIFO does not have any modules pushed, the read
queue of the stream head on either end is flushed depending on
the value of arg.

If FLUSHR is set and fildes is a pipe, the read queue for that end of
the pipe is flushed and the write queue for the other end is flushed.
If fildes is a FIFO, both queues are flushed.

If FLUSHW is set and fildes is a pipe and the other end of the pipe
exists, the read queue for the other end of the pipe is flushed and
the write queue for this end is flushed. If fildes is a FIFO, both
queues of the FIFO are flushed.

If FLUSHRW is set, all read queues are flushed, that is, the read
queue for the FIFO and the read queue on both ends of the pipe are
flushed.

Correct flush handling of a pipe or FIFO with modules pushed is
achieved via the pipeiood module. This module should be the first
module pushed onto a pipe so that it is at the midpoint of the pipe
itself.

On failure, errno is set to one of the following values:

ENOSR Unable to allocate buffers for flush message due to
insufficient STREAMS memory resources.

EINVAL

ENXIO

Invalid arg value.

Hangup received on fildes.

-
Flushes a particular band of messages. arg points to a bandinfo
structure that has the following members:

unsigned char
int

bi_pri;
bi_flag;

10/89

streamlo (7)

I_SETSIG

1 0/89

streamlo (7)

The bi_flag field may be one of FLUSHR, FLUSHW, or FLUSHRW as
described earlier.

Informs the stream head that the user wishes the kernel to issue the
SIGPOLL signal [see signal(2)] when a particular event has
occurred on the stream associated with fildes. I_ SETSIG supports
an asynchronous processing capability in STREAMS. The value of
arg is a bitmask that specifies the events for which the user should
be signaled. It is the bitwise-OR of any combination of the follow
ing constants:

S_INPUT Any message other than an M_PCPROTO has arrived
on a stream head read queue. This event is main
tained for compatibility with prior UNIX System V
releases. This is set even if the message is of zero
length.

S_RDNORM An ordinary (non-priority) message has arrived on a
stream head read queue. This is set even if the mes
sage is of zero length.

S_RDBAND A priority band message (band > 0) has arrived on a
stream head read queue. This is set even if the mes
sage is of zero length.

S HIPRI A high priority message is present on the stream
head read queue. This is set even if the message is
of zero length.

S OUTPUT The write queue just below the stream head is no
longer full. This notifies the user that there is room
on the queue for sending (or writing) data down
stream.

S_WRNORM This event is the same as s OUTPUT.

S_WRBAND A priority band greater than 0 of a queue down
stream exists and is writable. This notifies the user
that there is room on the queue for sending (or writ
ing) priority data downstream.

S_MSG A STREAMS signal message that contains the SIG
POLL signal has reached the front of the stream head
read queue.

s ERROR An M_ERROR message has reached the stream head.

S_HANGUP An M_HANGUP message has reached the stream head.

S BANDURG When used in conjunction with S_RDBAND , SIGURG
is generated instead of SIGPOLL when a priority mes
sage reaches the front of the stream head read queue.

A user process may choose to be signaled only of high priority
messages by setting the arg bitmask to the value S_HIPRI .

Page 3

streamlo (7)

Page 4

I GETSIG

I FIND

I PEEK

streamio (7)

Processes that wish to receive SIGPOLL signals must explicitly
register to receive them using I_ SETSIG. If several processes regis
ter to receive this signal for the same event on the same stream,
each process will be signaled when the event occurs.

If the value of arg is zero, the calling process will be unregistered
and will not receive further SIGPOLL signals. On failure, errno is
set to one of the following values:

EINVAL arg value is invalid or arg is zero and process is not
registered to receive the SIGPOLL signal.

EAGAIN Allocation of a data structure to store the signal
request failed.

Returns the events for which the calling process is currently
registered to be sent a SIGPOLL signal. The events are returned as
a bitmask pointed to by arg, where the events are those specified in
the description of I_SETSIG above. On failure, errno is set to one
of the following values:

EINVAL Process not registered to receive the SIGPOLL signal.

EFAULT arg points outside the allocated address space.

Compares the names of all modules currently present in the stream
to the name pointed to by arg, and returns 1 if the named module
is present in the stream. It returns 0 if the named module is not
present. On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL arg does not contain a valid module name.

Allows a user to retrieve the information in the first message on
the stream head read queue without taking the message off the
queue. !_PEEK is analogous to getmsg(2) except that it does not
remove the message from the queue. arg points to a strpeek
structure which contains the following members:

struct strbuf ctl.buf;
struct strbuf databuf;
long flags ;

The maxlen field in the ctl.buf and databuf strbuf structures
[see getmsg(2)] must be set to the number of bytes of control infor
mation and/or data information, respectively, to retrieve. flags
may be set to RS_HIPRI or 0. If RS_HIPRI is set, !_PEEK will look
for a high priority message on the stream head read queue. Other
wise, I_PEEK will look for the first message on the stream head
read queue.

I _PEEK returns 1 if a message was retrieved, and returns 0 if no
message was found on the stream head read queue. It does not
wait for a message to arrive. On return, ctl.buf specifies informa
tion in the control buffer, databuf specifies information in the data
buffer, and flags contains the value RS_HIPRI or 0. On failure,

10/89

streamlo (7) streamlo (7)

1 0/89

I_SRDOPT

errno is set to the following value:

EFAULT arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

EBADMSG

EINVAL

Queued message to be read is not valid for I _PEEK

ilegal value for flags.

Sets the read mode [see read(2)] using the value of the argument
arg. Legal arg values are:

RNORM Byte-stream mode, the default.

RMSGD
RMSGN

Message-discard mode.

Message-nondiscard mode.

In addition, treatment of control messages by the stream head may
be changed by setting the following flags in arg:

RPROTNORM Fail read() with EBADMSG if a control message is at
the front of the stream head read queue. This is the
default behavior.

RPROTDAT Deliver the control portion of a message as data
when a user issues read().

RPROTDIS Discard the control portion of a message, delivering
any data portion, when a user issues a read().

On failure, errno is set to the following value:

EINVAL arg is not one of the above legal values.

I_GRDOPT Returns the current read mode setting in an int pointed to by the
argument arg. Read modes are described in read(2) . On failure,
errno is set to the following value:

EFAULT arg points outside the allocated address space.

I NREAD Counts the number of data bytes in data blocks in the first message
on the stream head read queue, and places this value in the loca
tion pointed to by arg. The return value for the command is the
number of messages on the stream head read queue. For example,
if zero is returned in arg, but the ioctl return value is greater than
zero, this indicates that a zero-length message is next on the queue.
On failure, errno is set to the following value:

EFAULT arg points outside the allocated address space.

I FDINSERT Creates a message from user specified buffer(s), adds information
about another stream and sends the message downstream. The
message contains a control part and an optional data part. The
data and control parts to be sent are distinguished by placement in
separate buffers, as described below.

arg points to a strfdinsert structure which contains the following
members:

struct strbuf ctlbuf;

Page 5

streamlo (7)

Page 6

struct strbuf
long
int
int

databuf;
flags;
fildes ;
offset;

streamlo (7)

The len field in the ctlbuf strbuf structure [see putmsg(2)] must
be set to the size of a pointer plus the number of bytes of control
information to be sent with the message. fildes in the strfdinsert
structure specifies the file descriptor of the other stream. offset,
which must be word-aligned, specifies the number of bytes beyond
the beginning of the control buffer where I_FDINSERT will store a
pointer. This pointer will be the address of the read queue struc
ture of the driver for the stream corresponding to fildes in the
strfdinsert structure. The len field in the databuf strbuf
structure must be set to the number of bytes of data information to
be sent with the message or zero if no data part is to be sent.

flags specifies the type of message to be created. An ordinary
(non-priority) message is created if flags is set to 0, a high priority
message is created if flags is set to RS_HIPRI. For normal mes
sages, I_FDINSERT will block if the stream write queue is full due
to internal flow control conditions. For high priority messages,
I FDINSERT does not block on this condition. For normal mes
sages, I_FDINSERT does not block when the write queue is full and
0 _ NDELAY or 0 _ NONBLOCK is set. Instead, it fails and sets errno to
EAGAIN.

I_FDINSERT also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks, regardless
of priority or whether O_NDELAY or O_NONBLOCK has been specified.
No partial message is sent. On failure, errno is set to one of the
following values:

EAGAIN A non-priority message was specified, the O_NDELAY
or O _ NONBLOCK flag is set, and the stream write
queue is full due to internal flow control conditions.

ENOSR Buffers could not be allocated for the message that
was to be created due to insufficient STREAMS

memory resources.

EFAULT

EINVAL

arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

One of the following: fildes in the strfdinsert
structure is not a valid, open stream file descriptor;
the size of a pointer plus offset is greater than the
len field for the buffer specified through ctlptr;
offset does not specify a properly-aligned location
in the data buffer; an undefined value is stored in
flags.

10/89

streamlo (7)

I STR

10/89

ENXIO

ERANGE

streamlo (7)

Hangup received on fildes of the ioctl call or
fildes in the strfdinsert structure.

The len field for the buffer specified through data -
buf does not fall within the range specified by the
maximum and minimum packet sizes of the topmost
stream module, or the len field for the buffer
specified through databuf is larger than the max
imum configured size of the data part of a message,
or the len field for the buffer specified through
ctlbuf is larger than the maximum configured size
of the control part of a message.

I _FDINSERT can also fail if an error message was received by the
stream head of the stream corresponding to fildes in the
strfdinsert structure. In this case, errno will be set to the value
in the message.

Constructs an internal STREAMS ioctl message from the data
pointed to by arg, and sends that message downstream.

This mechanism is provided to send user ioctl requests to down
stream modules and drivers. It allows information to be sent with
the ioctl, and will return to the user any information sent
upstream by the downstream recipient. I_STR blocks until the sys
tem responds with either a positive or negative acknowledgement
message, or until the request "times out" after some period of time.
If the request times out, it fails with errno set to ETIME.

At most, one I STR can be active on a stream. Further I STR calls
will block untilthe active I_STR completes at the stream head. The
default timeout interval for these requests is 15 seconds. The
O_NDELAY and O_NONBLOCK [see open(2)] flags have no effect on
this call.

To send requests downstream, arg must point to a strioctl struc
ture which contains the following members:

int ic ard;
int ic-tilllout;
int ic-len;
char *ic_dp;

ic ard is the internal ioctl command intended for a downstream
mOdule or driver and ic tilllout is the number of seconds (-1 =

infinite, 0 = use default, ;() = as specified) an I_ STR request will
wait for acknowledgement before timing out. The default timeout
is infinite. ic_len is the number of bytes in the data argument
and ic _ dp is a pointer to the data argument. The ic _ len field has
two uses: on input, it contains the length of the data argument
passed in, and on return from the command, it contains the
number of bytes being returned to the user (the buffer pointed to
by ic_dp should be large enough to contain the maximum amount
of data that any module or the driver in the stream can return).

Page 7

streamlo (7)

I_SWROPT

I GWROPT

I SENDFD

Page 8

streamlo (7)

The stream head will convert the information pointed to by the
strioctl structure to an internal ioctl command message and
send it downstream. On failure, errno is set to one of the follow
ing values:

ENOSR

EFADLT

EINVAL

ENXIO

ETIME

Unable to allocate buffers for the ioctl message due
to insufficient STREAMS memory resources.

arg points, or the buffer area specified by ic_dp and
ic _len (separately for data sent and data returned)
is, outside the allocated address space.

ic _ len is less than 0 or ic _ len is larger than the
maximum configured size of the data part of a mes
sage or ic_ timout is less than -1 .

Hangup received on fildes.

A downstream ioctl timed out before acknowledge
ment was received.

An I_ STR can also fail while waiting for an acknowledgement if a
message indicating an error or a hangup is received at the stream
head. In addition, an error code can be returned in the positive or
negative acknowledgement message, in the event the ioctl com
mand sent downstream fails. For these cases, I STR will fail with
errno set to the value in the message.

-

Sets the write mode using the value of the argument arg. Legal bit
settings for arg are:

SNDZERO Send a zero-length message downstream when a
write of 0 bytes occurs.

To not send a zero-length message when a write of 0 bytes occurs,
this bit must not be set in arg.

On failure, errno may be set to the following value:

EINVAL arg is the the above legal value.

Returns the current write mode setting, as described above, in the
int that is pointed to by the argument arg.

Requests the stream associated with fildes to send a message, con
taining a file pointer, to the stream head at the other end of a
stream pipe. The file pointer corresponds to arg, which must be an
open file descriptor.

I_SENDFD converts arg into the corresponding system file pointer.
It allocates a message block and inserts the file pointer in the block.
The user id and group id associated with the sending process are
also inserted. This message is placed directly on the read queue
[see intro(2)] of the stream head at the other end of the stream
pipe to which it is connected. On failure, errno is set to one of the
following values:

10/89

stream lo (7)

I_RECVFD

I LIST

1 0/89

EAGAIN

EAGAIN

EBADF

EINVAL

ENJCIO

streamlo (7)

The sending stream is unable to allocate a message
block to contain the file pointer.
The read queue of the receiving stream head is full
and cannot accept the message sent by I_SENDFD.

arg is not a valid, open file descriptor.
fildes is not connected to a stream pipe.
Hangup received on fildes.

Retrieves the file descriptor associated with the message sent by an
I_SENDFD ioctl over a stream pipe. arg is a pointer to a data
buffer large enough to hold an strrecvfd data structure contain
ing the following members:

int fd;
uid t uid;
gid

-
t gid;

crulr fill [8] ;

fd is an integer file descriptor. uid and gid are the user id and
group id, respectively, of the sending stream.

If 0 NDELAY and 0 NONBLOCK are clear [see open(2)], I RECVFD will
block until a message is present at the stream head. IfO_NDELAY or
0 NONBLOCK is set, I RECVFD will fail with errno set to EAGAIN if
no message is present at the stream head.
If the message at the stream head is a message sent by an
I_SENDFD, a new user file descriptor is allocated for the file pointer
contained in the message. The new file descriptor is placed in the
fd field of the strrecvfd structure. The structure is copied into
the user data buffer pointed to by arg. On failure, errno is set to
one of the following values:
EAGAIN A message is not present at the stream head read

queue, and the O _ NDELAY or O _NONBLOCK flag is set.
EBADMSG

EFAULT
EMF ILE
ENJCIO
EOVERFLOW

The message at the stream head read queue is not a
message containing a passed file descriptor.
arg points outside the allocated address space.
NOFILES file descriptors are currently open.
Hangup received on fildes.

uid or gid is too large to be stored in the structure
pointed to by arg.

Allows the user to list all the module names on the stream, up to
and including the topmost driver name. If arg is NULL, the return
value is the number of modules, including the driver, that are on
the stream pointed to by fildes. This allows the user to allocate
enough space for the module names. If arg is non-NULL, it should
point to an str _list structure that has the following members:

Page 9

streamlo (7) streamlo (7)

int sl nroods ;
struct

-
str_mlist *sl_m:xil.ist;

The str _ mlist structure has the following member:

char l_name [FMNAMESZ+l] ;

sl moods indicates the number of entries the user has allocated in
the array and on return, sl_m:xil.ist contains the list of module
names. The return value indicates the number of entries that have
been filled in. On failure, errno may be set to one of the following
values:

EINVAL

EAGAIN
The sl_nroods member is less than 1 .

Unable to allocate buffers
I_ATMARK Allows the user to see if the current message on the stream head

read queue is "marked" by some module downstream. arg deter
mines how the checking is done when there may be multiple
marked messages on the stream head read queue. It may take the
following values:
ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on the
queue.

The return value is 1 if the mark condition is satisfied and 0 other
wise. On failure, errno may be set to the following value:
EINVAL Invalid arg value.

I_ CKBAND Check if the message of a given priority band exists on the stream
head read queue. This returns 1 if a message of a given priority
exists, or -1 on error. arg should be an integer containing the value
of the priority band in question. On failure, errno may be set to
the following value:

EINVAL Invalid arg value.
I GETBAND Returns the priority band of the first message on the stream head

read queue in the integer referenced by arg. On failure, errno may
be set to the following value:
ENODATA No message on the stream head read queue.

I_ CANPUT Check if a certain band is writable. arg is set to the priority band
in question. The return value is 0 if the priority band arg is flow
controlled, 1 if the band is writable, or -1 on error. On failure,
errno may be set to the following value:

EINVAL Invalid arg value.
I SETCLTIME

Page 1 0

-
Allows the user to set the time the stream head will delay when a
stream is closing and there are data on the write queues. Before
closing each module and driver, the stream head will delay for the
specified amount of time to allow the data to drain. If, after the

10/89

streamlo (7) streamlo (7)

10/89

I GETCLTIME

delay, data are still present, data will be flushed. arg is a pointer to
the number of milliseconds to delay, rounded up to the nearest
legal value on the system. The default is fifteen seconds. On
failure, errno may be set to the following value:
EINVAL Invalid arg value.

-
Returns the close time delay in the long pointed by arg.

The following four commands are used for connecting and disconnecting multi
plexed STREAMS configurations.
I_LINK Connects two streams, where fildes is the file descriptor of the

stream connected to the multiplexing driver, and arg is the file
descriptor of the stream connected to another driver. The stream
designated by arg gets connected below the multiplexing driver.
!_LINK requires the multiplexing driver to send an acknowledge
ment message to the stream head regarding the linking operation.
This call returns a multiplexor ID number (an identifier used to
disconnect the multiplexor, see I_UNLINK) on success, and a -1 on
failure. On failure, errno is set to one of the following values:
ENXIO Hangup received on fildes.

ETIME

EAGAIN

ENO SR

EBADF
EINVAL
EINVAL

EINVAL

EINVAL

Time out before acknowledgement message was
received at stream head.
Temporarily unable to allocate storage to perform
the I_LINK.
Unable to allocate storage to perform the I _LINK
due to insufficient STREAMS memory resources.
arg is not a valid, open file descriptor.
fildes stream does not support multiplexing.
arg is not a stream, or is already linked under a mul
tiplexor.
The specified link operation would cause a "cycle" in
the resulting configuration; that is, if a given driver
is linked into a multiplexing configuration in more
than one place.
fildes is the file descriptor of a pipe or FIFO.

An I_ LINK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error or
a hangup is received at the stream head of fildes. In addition, an
error code can be returned in the positive or negative acknowledge
ment message. For these cases, I_ LINK will fail with errno set to
the value in the message.

Page 1 1

streamlo (7)

!_UNLINK

!_PLINK

Page 1 2

streamio (7)

Disconnects the two streams specified by fildes and arg. fildes is the
file descriptor of the stream connected to the multiplexing driver.
arg is the multiplexor ID number that was returned by the I_ LINK.
If arg is -1, then all Streams which were linked to fildes are discon
nected. As in I_LINK. this command requires the multiplexing
driver to acknowledge the unlink. On failure, errno is set to one
of the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement message was
received at stream head.

ENOSR Unable to allocate storage to perform the !_UNLINK
due to insufficient STREAMS memory resources.

EINVAL

EINVAL

arg is an invalid multiplexor ID number or fildes is
not the stream on which the I LINK that returned
arg was performed.

-

fildes is the file descriptor of a pipe or FIFO.

An I_ UNLINK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error or
a hangup is received at the stream head of fildes. In addition, an
error code can be returned in the positive or negative acknowledge
ment message. For these cases, !_UNLINK will fail with errno set
to the value in the message.

Connects two streams, where fildes is the file descriptor of the
stream connected to the multiplexing driver, and arg is the file
descriptor of the stream connected to another driver. The stream
designated by arg gets connected via a persistent link below the
multiplexing driver. I_PLINK requires the multiplexing driver to
send an acknowledgement message to the stream head regarding
the linking operation. This call creates a persistent link which can
exist even if the file descriptor fildes associated with the upper
stream to the multiplexing driver is closed. This call returns a mul
tiplexor ID number (an identifier that may be used to disconnect
the multiplexor, see I_PUNLINK) on success, and a -1 on failure.
On failure, errno may be set to one of the following values:

ENXIO Hangup received on fildes.

ETIME

EAGAIN

EBADF

EINVAL

Time out before acknowledgement message was
received at the stream head.

Unable to allocate S1REAMS storage to perform the
I PLINK.

arg is not a valid, open file descriptor.

fildes does not support multiplexing.

10/89

streamlo (7) streamlo (7)

EINVAL

EINVAL

EINVAL

arg is not a stream or is already linked under a mul
tiplexor.

The specified link operation would cause a "cycle" in
the resulting configuration; that is, if a given stream
head is linked into a multiplexing configuration in
more than one place.

fildes is the file descriptor of a pipe or FIFO.

An !_PLINK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error
on a hangup is received at the stream head of fildes. In addition,
an error code can be returned in the positive or negative ack
nowledgement message. For these cases, I_PLINK will fail with
errno set to the value in the message.

I_PUNLINK Disconnects the two streams specified by fildes and arg that are con
nected with a persistent link. fildes is the file descriptor of the
stream connected to the multiplexing driver. arg is the multiplexor
ID number that was returned by !_PLINK when a stream was
linked below the multiplexing driver. If arg is MUXID_ALL then all
streams which are persistent links to fildes are disconnected. As in
I _PLINK, this command requires the multiplexing driver to ack
nowledge the unlink. On failure, errno may be set to one of the
following values:

ENXIO Hangup received on fildes.

ETIME

EAGAIN

EINVAL

EINVAL

Time out before acknowledgement message was
received at the stream head.

Unable to allocate buffers for the acknowledgement
message.

Invalid multiplexor ID number.

fildes is the file descriptor of a pipe or FIFO.

An I_PUNLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request if a message indicating an
error or a hangup is received at the stream head of fildes. In addi
tion, an error code can be returned in the positive or negative ack
nowledgement message. For these cases, I_PUNLINK will fail with
errno set to the value in the message.

SEE ALSO
close(2), fcntl(2), getmsg(2), intro(2), ioctl(2), open(2), poll(2), putmsg(2),
read(2), signal(2), write(2), signal(S) .
Programmer's Guide: STREAMS.

DIAGNOSTICS

10/89

Unless specified otherwise above, the return value from ioctl is 0 upon success
and -1 upon failure with errno set as indicated.

Page 1 3

sxt (7) sxt (7)

NAME
sxt - pseudo-device driver

DESCRIPTION

1 0/89

The special file /dev/sxt is a pseudo-device driver that interposes a discipline
between the standard tty line disciplines and a real device driver. The standard
disciplines manipulate virtual tty structures (channels) declared by the /dev/sxt
driver. /dev/sxt acts as a discipline manipulating a real tty structure declared
by a real device driver. The /dev/sxt driver is currently only used by the shl(l)
command.

Virtual ttys are named by inodes in the subdirectory /dev/sxt and are allocated
in groups of up to eight. To allocate a group, a program should exclusively open
a file with a name of the form /dev/sxt/??0 (channel 0) and then execute a
SXTIOCLINK ioctl call to initiate the multiplexing.

Only one channel, the controlling channel, can receive input from the keyboard at
a time; others attempting to read will be blocked.

There are two groups of ioctl(2) commands supported by sxt. The first group
contains the standard ioctl commands described in tenni.o(7), with the addition
of the following:

TIOCEXCL

TIOCNXCL

Set exclusive use mode: no further opens are permitted
until the file has been closed.

Reset exclusive use mode: further opens are once again per
mitted.

The second group are commands to sxt itself. Some of these may only be exe
cuted on channel 0.

SXTIOCLINK

SXTIOCSWl'CH

Allocate a channel group and multiplex the virtual ttys
onto the real tty. The argument is the number of channels
to allocate. This command may only be executed on chan
nel 0. Possible errors include:

EINVAL The argument is out of range.

ENOTTY The command was not issued from a real tty.

ENXIO linesw is not configured with sxt.

EBUSY An SXTIOCLINK command has already been
issued for this real tty.

ENOMEM There is no system memory available for allocat-
ing the virtual tty structures.

EBADF Channel 0 was not opened before this call.

Set the controlling channel. Possible errors include:

EINVAL An invalid channel number was given.

EPERM The command was not executed from channel 0.

Page 1

sxt (7)

SXTIOCWF

SXTIOCUBLK

SXTIOCSTAT

SXTIOCTRACE

SXTIOCNOTRACE

FILES

sxt (7)

Cause a channel to wait until it is the controlling channel.
This command will return the error, EINVAL, if an invalid
channel number is given.
Turn off the loblk control flag in the virtual tty of the indi
cated channel. The error EINVAL will be returned if an
invalid number or channel 0 is given.
Get the status (blocked on input or output) of each channel
and store in the sxtblock structure referenced by the argu
ment. The error EFAULT will be returned if the structure
cannot be written.
Enable tracing. Tracing information is written to the con
sole on the 3B2 Computer. This command has no effect if
tracing is not configured.
Disable tracing. This command has no effect if tracing is
not configured.

/dev/sxt/?? [0-7) Virtual tty devices
SEE ALSO

shl(l), stty(l) ioctl(2), open(2), teDlli.0(7)

Page 2 10/89

tlmod {7) timod {7)

NAME
ti.m:>d - Transport Interface cooperating STREAMS module

DESCRIPTION

1 0/89

ti.Jood is a STREAMS module for use with the Transport Interface (TI) functions of
the Network Services library. The ti.m:>d module converts a set of ioctl(2) calls
into STREAMS messages that may be consumed by a transport protocol provider
which supports the Transport Interface. This allows a user to initiate certain TI

functions as atomic operations.

The ti.m:>d module must be pushed onto only a stream terminated by a transport
protocol provider which supports the TI.

All STREAMS messages, with the exception of the message types generated from
the ioctl commands described below, will be transparently passed to the neigh
boring STREAMS module or driver. The messages generated from the following
ioctl commands are recognized and processed by the ti.m:>d module. The for
mat of the ioctl call is:

iinclude <sys/stropts . h>

struct strioctl strioctl;

strioctl . ic cmd = cmd;
strioctl . ic

-
timeout = INFTIM;

strioctl . ic-len = size;
strioctl . ic=dp = (char *) bu/
ioctl (fildes, I_STR, &strioctl) ;

Where, on issuance, size is the size of the appropriate TI message to be sent to the
transport provider and on return size is the size of the appropriate TI message
from the transport provider in response to the issued TI message. bu/ is a pointer
to a buffer large enough to hold the contents of the appropriate TI messages. The
TI message types are defined in <sys/tihdr . h>. The possible values for the cmd
field are:

TI BIND

TI_UNBIND

TI_GETINFO

Bind an address to the underlying transport protocol provider.
The message issued to the TI_BIND ioctl is equivalent to the TI

message type T_BIND_REQ and the message returned by the suc
cessful completion of the ioctl is equivalent to the TI message
type T_BIND_ACK.

Unbind an address from the underlying transport protocol pro
vider. The message issued to the TI_UNBIND ioctl is equivalent
to the TI message type T _UNBIND_ REQ and the message returned
by the successful completion of the ioctl is equivalent to the TI

message type T_OK_ACK.

Get the TI protocol specific information from the transport proto
col provider. The message issued to the TI_GETINFO ioctl is
equivalent to the TI message type T _INFO_ REQ and the message

Page 1

tlmod (7) tlmod (7)

FILES

TI_OPTMGMT

returned by the successful completion of the ioctl is equivalent
to the TI message type T _INFO_ ACK.
Get, set or negotiate protocol specific options with the transport
protocol provider. The message issued to the TI_OPTMGMT ioctl
is equivalent to the TI message type T _ OPTMGfr _ REQ and the
message returned by the successful completion of the ioctl is
equivalent to the TI message type T_OPTMGMT_ACK.

<sys/timod. h>
<sys/tiuser . h>
<sys/tihdr . h>
<sys/errno . h>

SEE ALSO
tirdwr(7).
Programmer's Guide: STREAMS.
Programmer's Guide: Networking Interfaces.

DIAGNOSTICS

Page 2

If the ioctl system call returns with a value greater than 0, the lower 8 bits of
the return value will be one of the TI error codes as defined in <sys/tiuser . h>.
If the TI error is of type TSYSERR. then the next 8 bits of the return value will con
tain an error as defined in <sys/errno . h> [see intro(2)) .

10/89

tlrdwr {7) tlrdwr {7)

NAME
tirdwr - Transport Interface read/write interface STREAMS module

DESCRIPTION

10/89

tirdwr is a STREAMS module that provides an alternate interface to a transport
provider which supports the Transport Interface (TI) functions of the Network
Services library (see Section 3N). This alternate interface. allows a user to com
municate with the transport protocol provider using the read(2) and write(2)
system calls. The putmsg(2) and getmsg(2) system calls may also be used. How
ever, putmsg and getms9 can only transfer data messages between user and
stream.

The tirdwr module must only be pushed [see !_PUSH in streamio(7)] onto a
stream terminated by a transport protocol provider which supports the TI. After
the tirdwr module has been pushed onto a stream, none of the Transport Inter
face functions can be used. Subsequent calls to TI functions will cause an error
on the stream. Once the error is detected, subsequent system calls on the stream
will return an error with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed on the
stream, popped [see !_POP in streamio(7)] off the stream, or when data passes
through it.
push -

write -

read -

When the module is pushed onto a stream, it will check any existing
data destined for the user to ensure that only regular data messages
are present. It will ignore any messages on the stream that relate to
process management, such as messages that generate signals to the
user processes associated with the stream. If any other messages are
present, the I_ PUSH will return an error with errno set to EPROTO.

The module will take the following actions on data that originated
from a write system call:

- All messages with the exception of messages that contain control
portions (see the putmsg and getmsg system calls) will be tran
sparently passed onto the module's downstream neighbor.

- Any zero length data messages will be freed by the module and
they will not be passed onto the module's downstream neighbor.

- Any messages with control portions will generate an error, and any
further system calls associated with the stream will fail with errno
set to EPROTO.

The module will take the following actions on data that originated
from the transport protocol provider:
- All messages with the exception of those that contain control por

tions (see the putmsg and getmsg system calls) will be tran
sparently passed onto the module's upstream neighbor.

- The action taken on messages with control portions will be as fol
lows:

Page 1

tirdwr {7) tirdwr (7)

o Messages that represent expedited data will generate an error.
All further system calls associated with the stream will fail
with errno set to EPROTO.

o Any data messages with control portions will have the control
portions removed from the message prior to passing the mes
sage on to the upstream neighbor.

o Messages that represent an orderly release indication from the
transport provider will generate a zero length data message,
indicating the end of file, which will be sent to the reader of
the stream. The orderly release message itself will be freed
by the module.

D Messages that represent an abortive disconnect indication
from the transport provider will cause all further write and
putmsg system calls to fail with errno set to ENXIO. All
further read and getmsg system calls will return zero length
data (indicating end of file) once all previous data has been
read.

D With the exception of the above rules, all other messages with
control portions will generate an error and all further system
calls associated with the stream will fail with errno set to
EPROTO.

- Any zero length data messages will be freed by the module and
they will not be passed onto the module's upstream neighbor.

pop - When the module is popped off the stream or the stream is closed, the
module will take the following action:
- If an orderly release indication has been previously received, then

an orderly release request will be sent to the remote side of the
transport connection.

SEE ALSO

Page 2

streamio(7), timod(7).
intro(2), getmsg(2), putmsg(2), read(2), write(2), intro(3).
Programmer's Guide: STREAMS.
Programmer's Guide: Networking Interfaces.

10/89

xt (7) xt (7)

NAME
xt - STREAMS-based multiplexed tty driver for AT&T windowing terminals

DESCRIPTION

1 0/89

The xt driver provides virtual tty(7) circuits multiplexed onto STREAMS-based
device drivers. STREAMS-based xt is a streams upper multiplexor pseudo-device
driver that sits between the stream head and a STREAMS hardware device driver.

Virtual tty(7) circuits are named by character-special files of the form
/dev/xt/???. Filenames end in three digits, where the first two represent the
channel group and the last represents the virtual tty(7) number (0-7) of the chan
nel group. Allocation of a new channel group is done dynamically by attempting
to open a name ending in 0 with the o _ EXCL flag set. After a successful open, the
tty(7) file onto which the channels are to be multiplexed should be passed to xt
via the !_LINK streamio(7) request. Afterwards, all the channels in the group
will behave as normal tty(7) files, with data passed in packets via the real tty(7)
line.

The xt driver implements the protocol described in xtproto(S) and in layers(S).
Packets are formatted as described in xtproto(S), while the contents of packets
conform to the description in layers(S).

There are four groups of ioct1(2) requests recognized by xt. The first group
contains the normal tty ioctl(2) request described in termio(7), with the addi
tion of the following:

TIOCGWINSZ Requires the address of a winsize structure as an argument.
The window sizes of the layer associated with the file descrip
tor argument to ioctl(2) are copied to the structure.

The second group of ioctl(2) requests concerns control of the windowing termi
nal. Request from this second group which involve communication with the ter
minal are described in more detail in layers(S). These requests are defined in
the header file <sys/ jioctl . h>. The requests are as follows:

JTYPE, JMPX Both return the value JMPX. These are used to identify a termi
nal device as an xt channel.

JBOOT, JTERM Both generate an appropriate command packet to the window
ing terminal affecting the layer associated with the file descrip
tor argument to ioctl(2). They may return the error code
EAGAIN on STREAMS buffer allocation failure.

JWINSIZE

JTRON

Specifies the timeouts in milliseconds. Invalid except on chan
nel 0. This may return the error code EAGAIN on STREAMS
buffer allocation failure.

Requires the address of a jwinsize structure as an argument.
The window sizes of the layer associated with the file descrip
tor argument to ioctl(2) are copied to the structure.

Requires the address of a string of the form channel, UNIX sys
tem command as an argument. Run the UNIX system com
mand in the specified channel (layer). It may return the error
code EAGAIN on STREAMS buffer allocation failure.

Page 1

xt (7)

FILES

JZOMBOOT

JAGENT

JXTPROTO

xt (7)

Generate a command packet to the windowing terminal to
enter download mode on the channel associated with the file
descriptor argument to ioctl(2), like JBOOT; but when the
download is finished, make the layer a zombie (ready for
debugging). It may return the error code EAGAIN on STREAMS

buffer allocation failure.

Send the supplied data as a command packet to invoke a win
dowing terminal agent routine, and return the terminal's
response to the calling process. Invalid except on the file
descriptor for channel 0. See jagent(5). It may return the
error code EAGAIN on STREAMS buffer allocation failure.

Set xt protocol type [see xtproto(5)] . It may return the error
code EAGAIN on STREAMS buffer allocation failure.

The third group of ioctl(2) requests concerns the configuration of xt, and is
described in the header file <sys/nxt . h>. The requests are as follows:

XTIOCTYPE Returns the value XTIOCTYPE. Identical in purpose to JMPX.

XTIOCHEX Specifies that ENCODING MODE should be turned on.

XTIOCTRACE

XTIOCNOTRACE

XTIOCSTATS

Requires the address of a 'lbuf structure as an argument. The
structure is filled with the contents of the driver trace buffer.
Tracing is enabled. See xtt(l).
Tracing is disabled.

Requires an argument that is the address of an array of size
s_NSTATS, of type Stats_t. The array is filled with the con-
tents of the driver statistics array. See xts(l).

The fourth group of ioctl(2) requests concerns configuring streamio(7) multi
plexor. The requests are as follows:

I LINK Links the hardware driver underneath xt. The arguments to
the ioctl are documented in streamio(7).

I_ UNLINK Unlinks the hardware driver underneath xt. The arguments to
the ioctl are documented in streamio(7).

/dev/xt/?? [0-7)
/usr/include/sys/jioctl . h
/usr/include/sys/nxtproto . h
/usr/include/sys/nxt . h

multiplexed special files
packet command types
channel multiplexing protocol definitions
STREAMS-based driver specific definitions

SEE ALSO

Page 2

layers(l), xts(lM), xtt(lM)
ioctl(2), open(2)
jagent(5), layers(5), xtproto(5)
streamio(7), termio(7), tty(7).
Programmer's Guide: STREAMS

10/89

G Append ix G : Hardware Examples

Hardware Examples G-1
382 Computer Configuration Mechanism G-1

382 STREAMS-based Ports Driver G-2
Data Structures G-2
Open and Close Routines G-4
Write Put Procedure G-5
Write Service Procedure G-7
I nterrupt Procedure G-8
Read Service Procedure G-9

382 STREAMS-based Console Driver G-1 0
Data Structures G-1 1
Open and Close Routines G-1 2
Read-Side Processing G-1 2

• Interrupt Level Processing G-1 2
• Service Procedure Processing G-1 3

Write-Side Processing G-1 3
Daemon Mode G-1 4

382 STREAMS-based XT Driver G-1 5
Data Structures G-21
Open Processing G-24
Close Processing G-26
Data Flow G-26
Read-Side Processing G-28

Table of Contents

Table of Contents ----------------------

I I

Write-Side Processing
Multiplexing
Flow Control

• STREAMS Flow Control
• XT Driver Protocol Flow Control

Scanning
Cyclic Redundancy Check
Encoding

G-28
G-32
G-32
G-32
G-32
G-33
G-33
G-33

Extended STREAMS Buffers G-35

Programmer's Gulde: STREAMS

Hardware Examp les

This appendix provides information pertaining to certain hardware types.
These are only examples and their inclusion does not predude using the
STREAMS mechanism in hardware not mentioned here.

382 Computer Configuration Mechanism

The 3B2 computer configuration mechanism differentiates STREAMS devices
from character devices by a special type in the fla.g field of master files contained
in /etc/master.d [see master(4)] . The c flag specifies a non-STREAMS character
1/0 device driver. The f flag specifies that the associated cdevsw entry will be
a STREAMS driver. The special file (node) that identifies the STREAMS driver
must be a character special file, as is the file for a character device driver,
because the system call entry point for STREAMS drivers is also the cdevsw
table.

STREAMS modules are identified by an m in the flag field of master files con
tained in /etc/master.d and the configuration mechanism creates an associated
fmodsw table entry for all such modules.

• ������:�ti����e���
n
���;�������

r
��d

i
;Ji�;�'!s

s
;::

�
�e: may

� STREAMS device or module with a character device.

Appendix G : Hardware Examples G-1

382 STREAMS-based Ports Driver

The AT&T 3B2 computers support asynchronous RS232 communication with its
PORTS and IDPORTS boards. In UNIX® System V Release 4.0, the device
driver for the 3B2 ports board is a STREAMS-based asynchronous driver. Each
model in the 3B2 series supports PORTS and IDPORTS boards, and each board
supports four asynchronous ports and one parallel Centronics line printer port.
The basic difference between PORTS and HIPORTS is that PORTS polls the uart
for input, whereas HIPORTS gets input on an interrupt basis. In this section an
expression ports board is used collectively for PORTS and IDPORTS.

The ports board is driven by an Intel® 8186 microprocessor. The board is made
operational by downloading (pumping) the firmware on the board. This is done
by the /sbin/npump command invoked by /sbin/ports which determines the
number and locations of each ports board installed. /shin/ports is called from a
script that is invoked by /sbin/init from the /sbin/inittab file when going to an
initial state 2 or 3.

From the file system perspective, each port is named /dev/term/MN where M is
the physical board slot number on the backplane of the 3B2 and N is 1, 2, 3, 4,
or 5 identifying the port. The port position 5 is for the Centronics port.

The ports board communicates via interrupts with the 3B2 host. Typical inter
rupts are acknowledgements of receipt of data buffer from the host, data arrival
from a port, connection and disconnection to/from the host, an acknowledge
ment of option setting on the port, etc. The ports board also performs some ter
mio(7) processing on the board.

Data passing between the 3B2 host processor and the ports board is performed in
units of 64 bytes that is the size of data silos on the ports board.

Data Structures

Data local to the ports driver is stored in the npp _tty array that is an array of
the structure strtty. strtty has the following format:

G-2 Programmer's Gulde: STREAMS

3B2 STREAMS-based Ports Driver

The struct t_buf t_in and struct t_buf t_out are buffers used for incoming and out
going messages to and from a ports board. The format is:

where bu_ bp is a pointer to a 64-byte message block and bu ytr contains the
physical address of the data part of the bu_ bp message block, and bu _cnt is a
data byte count in the buffer.

t _ ioctlp is used to store ioctl data until the firmware acknowledges that the ioctl
command has been performed. t_rdqp is a pointer to the driver's queue. t_lbuf
is a large buffer used to store input data. The t _ dev entry is a minor device
number. The termio flags c_iflag, c_oflag, c_cflag, c_lflag, c_line, and the array
c_cc are stored in t_iflag, t_oflag, t_cflag, t_lflag, t_line, and t_cc entries respec
tively. The t_dstat and t_state fields are used to store internal driver states.

Appendix G : Hardware Examples G-3

382 STREAMS-based Ports Driver

The following lists the t _state flags used by the ports driver code:

• WOPEN - the driver is waiting for an open to complete.

• ISOPEN - the driver is open.

• TBLOCK - the driver has sent a control character to the terminal to block
transmission from the terminal (input flow control).

• CARR_ ON - set if a carrier has been detected by the driver.

• BUSY - the driver is transmitting data.

• WIOC - wait for an ioctl to complete.

• TI'STOP - output has been stopped by a control-s character received from
the terminal (output flow control).

• TIMEOUT - set if timeout is in progress, for handling delays.

• TTIOW - a user process is sleeping awaiting for the driver to, for example,
drain output, wait for a carrier, get buffers.

The list below gives the t _dstat flags used by the ports driver code:

• SPLITMSG - set if the buffer to be transmitted is greater than the max
imum size the board can handle. The message is transmitted in PPBUF
SIZ (64-byte) units.

• WENTRY - set if waiting for transmit a queue entry on the board.

• SUPBUF - set if a port has received allocated STREAMS buffers.

• OPDRAIN - wait for output to drain in the open routine.

Open and Close Routines

The open routine is called whenever the port is opened. It allocates a sizeof
(structure stroptions) buffer and in this buffer assigns the Stream head's read
queue high and low water marks to 512 and 256 bytes respectively and also
indicates whether a controlling terminal is assigned (see M _ SETOPTS message).
It also assigns initial values to the local iflag, oflag, cflag, lflag, and c _cc elements.
The open allocates a STREAMS message block and uses this buffer to assign a
set options message using the local iflag, oflag, cflag, lfl.ag, and c _cc values. The

G-4 Programmer's Gulde: STREAMS

P rts Driver
EAMS-based 0

382 STR

rt is marked as
e to the ports board, and the Po

open also sends a c�nnec�
m��gstate field) .

open (i.e., ISOPEN ts set m t -
. these buffers are used as

On the first open, five 64-byte buffers ar
b
e allocat

t
e
o
d
pe, ns four 64-byte buffers are

. . d ta On su sequen '
input buffers for mcommg a ·

�� � � h · o
NDELAY o NONBLOCK and t ere is n

If the device is not opened with 0 _ or -
.

· 5
carrier detected, the sleep occurs until a carrier is detected or un�tl the open 1

interrupted by the calling application. Otherwise, the open routme proceeds
without waiting for a carrier.

The driver's close routine is called on the last close of a port. It drains the out
put queue by reading from the driver's write queue and transmitting the data to
the board and frees the current input buffer and the transmit buffer. The c.\ose
routine decrements the number of input buffers by 5 or 4 depending whether
the buffers were allocated on the first or subsequent opens of a port.

The device is marked closed and the carrier flag is taken off. Finally, a discon
nect message is sent to the ports board. In the disconnect sequence the host will
be interrupted the same number of times as there are buffers to be freed (deallo
cated) on the board.

Write Put Procedure

The driver's write put procedure is called when a message is sent to the ports
board. If the carrier is not on, data are held on the queue. The put procedure
processes M_DATA, M_IOCTL, and M_CTL messages.

M_DATA messages are unbundled, thus a message is composed of linked n
data blocks that are "broken" into n separate messages and put into the driver's
write queue. Zero length messages are discarded.

The driver's write queue is read and message data are written to the ports board.
If the data block is greater than 64 bytes (the maximum buffer size for the ports
board), the data are "broken" into at most 64-byte blocks and transmitted.

If data are to be transmitted to the device that currently does not have Data
Terminal Ready set high (e.g., the terminal is powered ofO, Terminal
Ready signal goes high and data that were enqueued are written to the device.

Appendix G: Hardware Examples G-5

382 STREAMS.based Ports Driver

For M_ IOCrr. th .
tennio(7)J:

e following ioctJs are ha

G-6

• res
ndled handled by the driver (see also ETAW, TCSETA TCSETSW l1 :ss:e is put back �nto the drlve;,;Er�t- if the ports board is busy, the e e message, the iflag ofla.

.n,. wn e queue. If the ports board can a local data area, terminai
' rg, c,.ug, /flag, and cc _c array are copied into

sage if sent upstream If t!:;:meters are set, and an M_IOCACK mes
of Sl;JREAMS buf�

·

h
. . nal parameters can't be set because of lack

write ueue for
ers, t e ongmal message is put back on the head of the q TCSETA and at the end of the write queue for TCSETAW. When the buffer becomes available the parameters are set. If the terminal parameter setting fails for any other reason, the negative acknowledge

ment is sent.

• TCSETA!YifCSETSF - these are treated like TCSETAW except that before

the ter��l parameters are set on the ports board, the board's input queue
and the driver's read queue are flushed.

• TCGETA - a STREAMS buffer of size struct termio is allocated and iflag,
oflag, cflag, lfl.ag, and cc _c array values are copied from the local buffer area
to this allocated buffer, and the buffer is sent in the M_IOCACK
upstream.

• TCGETS - a STREAMS buffer of size struct termios is allocated and iflag,
oflag, cflag, lflag, and c _cc array values are copied from the local buffer area
to this allocated buffer, and the buffer is sent in the M _IOCACK
upstream.

• PPC VERS - this determines if there is a HIPORTS or PORTS board in a
partkular 1/0 slot.

• P _RST - this is called by /sbin/npump to reset ROMware.

• P _ SYSGEN - this is called by /sbinlnpump to "sysgen" the ports board (see
note below for further details).

• P _LOAD - this is called by /sbin/npump to download the pump code to
the board.

• P _ FCF - this is called by /sbin/npump to "jump start" RAM code. The
execution of the code starts on the board.

Programmer's Gulde: STREAMS

382 STREAMS-based Ports Driver

• EUC MSAVE, EUC MREST, EUC IXLOFF, EUC IXLON, EUC OXLOFF,
EUC=OXLON - the driver sends m M_IOCACK message upstream upon
receipt of these ioctls, the module upstream acts upon them to handle
multi-byte characters.

• ioctls type LDIOC are acknowledged and all other ioctls receive a nega
tive acknowledgement. ' �::�t���:����:���

e
�������t�n

n
d t�!�

t
d�:;�;�CF��: ����:nction)

call. /sbin/npump supplies the board with an address at which to begin
execution of the downloaded program. After the FCF call, /sbinlnpump does a "sysgen" which jump starts the the board.

termio(7) processing is shared between the line discipline module and the
board. This is done using line discipline functional negotiation. The ports
driver handles the M _ CTL command MC_ CANONQUERY sent by the line dis
cipline module. Other commands are freed. The convention used between the
ports driver and the line discipline module is that an M _ CTL message has the
same format as that of an M _IOCTL message. The returned command field is
set to MC_SOME_CANON. The M_CTL message is generated by the line dis
cipline module that queries the ports driver for termios flags, c _iflag, c _oflag, or
c _lflag values the driver is handling. The bit value of 1 is assigned for c _iflag and
c_oflag to indicate that the driver handles these flags. The value of 0 is assigned
to c _lflag to indicate that the driver does not handle this flag.

Write Service Procedure

The only purpose of the write-side service procedure is to handle flow control.
If the state of the ports board is BUSY or WIOC, nothing can be sent until the
state becomes clear. If the board is not busy, the message is read from the
driver's write queue. If there are no data to send, the sleeping process is
awaken to receive input. When there are data to send, type of data is checked
before processing starts. M_DATA messages are transmitted in 64-byte units
and M_IOCTL messages are handled in the same way as in the write put pro
cedure. All other messages are freed.

Appendix G : Hardware Examples G-7

382 STREAMS-based Ports Driver

Interrupt Procedure

There is no put procedure in read-side. An interrupt procedure queues data for
later processing by the service procedure in order to avoid interrupt stack
overflows. Therefore, the ports driver should not call the putnext utility routine
from the interrupt routine, but use its input queue to store incoming messages.

The interrupt stack is usually small, and at STREAMS priority there are
many devices that can interrupt. By avoiding the use of the putnext utility routine (that puts a message to the next queue) from the interrupt routine
helps to keep the stack from overflowing.
On the 382s, the interrupt stack size and queue stack size are 1000 in UNIX
System V Release 4.0.

The ports driver's interrupt routine is invoked whenever there is any communi
cation to/from the ports board. The following values are returned when the
interrupt routine is called:

• PPC_RECV - data have been received from the ports board to the host. If
the buffers on the ports board were flushed or disrupted in any way, the
buffers are freed if the Stream is closed. Otherwise, a zero length message
is sent upstream. If a break is received, an M_BREAK message is sent
upstream. Data will be read off the queue by the service procedure.

• PPC_XMIT - data have been transmitted from the host to the ports board.
The wake-up process waiting for the port is freed and data are transmit
ted. Data are transmitted in units of 64 or less bytes. After all data have
been transmitted, the message block is freed and the driver's write queue
is read and sent to the board.

• PPC _ ASYNC - the following are the ports board asynchronous interrupts:

G-8

o AC_ BRK - a break is detected from the ports line.

o AC_DIS - asynchronous disconnection. If the Stream is open, an
M _HANGUP message is sent, and both the read and write queues
on the ports board are flushed.

o AC_ CON - asynchronous connection. All processes are awaken
when the line becomes active.

Programmer's Gulde: STREAMS

382 STREAMS-based Ports Driver

a AC_FLU - the board's read and write queues are flushed.

• PPC_ OPTIONS - an acknowledgement that options have been set on the
board. The buffer that passed options to the board is freed and any
processes waiting the options to be set are awaken.

• PPC_ DISC, PPC_ CONN - an acknowledgement report for port open and
close.

• PPC _DEVICE -an express job is issued.

• PPC _ BRK - a break has been sent to the board from the host.

• SYSGEN - the port is set in "sysgen" state. Firmware has finished the ini
tialization process.

• NORMAL, FAULT, QFAULT - NORMAL (command returns successfully},
FAULT (illegal instruction}, QFAULT (job placed on the queue has an
unknown operation code}.

If the data queued by the interrupt routine go beyond {MAX_INPUT}, all data
in the queue are thrown away. ' The system m�y im�se a limit, {MAX_INPUn, on the number of bytes that may be stored m the input queue. If data enqueued exceed {MAX INPUT},

all data enqueued will be thrown away. -

Read Service Procedure

The driver's read-side service routine passes data upstream. If the queue
upstream from the driver is full and there are ordinary messages to be delivered
upstream, these messages are placed back on the driver's queue for later
transmittal. High priority messages are delivered upstream. If the queue is full
due to the flow control limits, a message is sent to the ports board to suspend
transmission to the host and the messages are put back at the head of the
driver's read queue.

Appendix G: Hardware Examples G-9

382 STREAMS-based Console Driver

The console in the 3B2 UNIX System is similar to an ordinary user terminal but
has some differences such as the ability to halt the system. The console can be
considered a "dumb" terminal controller because it does not do any termio pro
cessing but requires a line discipline module in the host to do that processing.
UNIX System V Release 4.0 includes a STREAMS-based console driver.

This section describes the operation of the console driver using the STREAMS
mechanism. It does not consider the function of the console driver outside the
STREAMS environment, except for brief descriptions of console related terms
used in various places in the code and documentation.

UNIX System V has four special file names in /dev associated with the 3B2 con
sole device driver: contty, systty, syscon, and console.

• contty is a 3B2 specific device that refers to the second port on the system
board. It is driven by the console device driver.

• systty is the physical system console. It can refer to any device that is to be
accessible to the system at early initialization time. It would normally be
linked to the device that is built-in to the kernel as the target for kernel
printfs. systty stays linked to a particular device and it can be used as a
login device.

• syscon is the virtual system console. It is used by the initialization routine
to communicate to the user. syscon starts off linked to systty and will get
linked back to systty if the initialization routine can't communicate with
syscon.

G-1 0

When a user goes to a single-user mode, the initialization routine relinks
syscon to the user's terminal, and syscon will now communicate to the
user at the terminal where the user started the shutdown.

An interrupt from systty while the initialization routine is waiting for a
response from syscon will cause syscon to be switched back to systty.

syscon can be thought as the boot time and single-user-mode system con
sole. Anything sent off from inittab during this period interfaces with
syscon since the initialization routine will have made sure that syscon can
be accessed. syscon is moved around by the system and, therefore, it
should not be explicitly relinked by users. Since syscon is the virtual dev
ice that becomes attached to other normal terminal, it should not be used
as a login device.

Programmer's Gulde: STREAMS

382 STREAMS-based Console Driver

• console is the real system console. It is the device to which daemons send
their output and where other processes send messages to system adminis
trators. console is normally used as the console login device.

The 3B2 system board integral uart driver (also called iuart) uses a 2681 Dual
Asynchronous Receiver/Transmitter (DUART) for serial communication. The
DUART communicates with the console and contty ports on the 3B2. From the
file system perspective, each port is named /dev/console and /dev/contty. One
channel of the integral Direct Memory Access (DMA) controller is assigned to
each uart channel. DMA is only done for output operations. The uart generates
an interrupt as each character is received.

Data Structures

The iuart uses the iu _tty array to maintain state information. The iu _tty array is
of type structure strtty that is used by all STREAMS-based terminal drivers.
The format of the strtty is given in the section describing the 3B2 STREAMS
based ports driver.

The iuart uses the t_out.bu_bp field as the place to hold data that are being
DMA'ed for the output operation. The t_in.bu_bp field is used to buffer input
data until data are sent upstream either when the buffer is full or the buffering
timeout period has elapsed. The t_deo entry is the minor device number. There
is a one-to-one correspondence between the minor device and the port number.
For the 3B2, a minor device 0 corresponds to the console and a minor device 1
corresponds to the con tty line. The iuart handles only the termio flags c _iflag
and c_cflag, which are stored in the corresponding t_iflag and t_cflag fields of the
structure strtty. The other fields are used in the same way as with the ports
driver.

Appendix G : Hardware Examples G-1 1

382 STREAMS-based Console Driver

Open and Close Routines

The open and close routines of the console driver are nearly identical to those of
the ports driver. As with the ports driver, the open routine allocates a sizeof
buffer, assigns high and low water marks to the Stream head, and indicates
whether a controlling terminal is to be assigned. The console driver will also
sleep until a carrier is detected or the open routine is interrupted by the calling
application, if the device is not open with O_NDELAY or O_NONBLOCK;
otherwise the open routine proceeds without waiting for a carrier.

The open routine is called whenever the console or contty is opened. The open
routine also assigns initial values to the local iflags. The initial iflag values are
IXON I IXANY I BRKINT I IGNP AR, and all other flags are set to zero. The
default contty setting (t _cflag> is SSPEED I CS8 I CREAD I HUPCL. The port is
marked as open (ISOPEN is set in the t _state field). For the first open, if the line
opened is the system console, the control modes are taken from the nonvolatile
RAM (nvram).

The close routine is called on the last close close of the port. The close drains
the output queue by reading from the driver's write queue and transmitting the
data to the board. If HUPCL is set in the cflag field, a command to hang up the
line is sent.

Read-Side Processing

The console driver's read-side processing is split between the interrupt level
routines and the service procedure.

Interrupt Level Processing

The minor device number of the device interrupting is derived from the inter
rupt vector. The private data structure for the minor device is also obtained. If
the received interrupt character is a special character (STOP, ST ART) the driver
specific routines are called to suspend/restart output. The incoming character is
then checked for framing error, parity errors, and overruns. If a break condition
is set in the DUART status registers and the BRKINT flag is set in the iflags, an
M _BREAK message is sent upstream to the module above. If the ISTRIP flag is
set, the left most bit (most significant bit) will be stripped off the incoming char
acter. The received character is then put into a STREAMS buffer and kept in
the buffer until:

G-1 2 Programmer's Gulde: STREAMS

382 STREAMS-based Console Driver

• Three clock ticks have elapsed since the last character was received, or

• READBUFSIZE (defined to be 128) characters have been received by the
iuart.

When either of the above conditions have been satisfied, the STREAMS buffer
containing the characters will be enqueued on the iuart's read queue. The even
tual handling of input by the service procedure is provided to avoid problems
with interrupt stack overflows (also see note in "Interrupt Procedure" of the
ports driver description).

Service Procedure Processing

The service procedure removes the message waiting in the read queue and if
there is no flow control blockage upstream, the message is sent upstream.
Otherwise, the service procedure enqueues the message back on the read queue
and returns.

If ldterm's read queue is full and input flow control is in effect, then a com
mand is sent to the uart to block input. If the character count exceeds
{MAX_INPUT}, data are dumped without warning and the read queues are
flushed.

Write-Side Processing

The put procedure handles all processing on the write-side. The write-side han
dles the same messages as the ldterm module (see Chapter 12, the section
''Write-Side Processing" under "Line Discipline Module").

M_DATA messages are processed by the put procedure that splits a complex
M_DATA messages (message with several blocks attached) into individual
blocks. If OMA is currently underway, the message is put back on the read
queue and are examined when the OMA complete transmit interrupt is
received.

The iuart handles M _IOCTL messages and recognizes the following ioctls:
TCGETA, TCGETS, TCSETA, TCSETS, TCSETAW, TCSETSW, TCSETSF, and
TCSETAF [see termio(7)] . The ioctl TCFLSH is converted to an M_FLUSH mes
sage that causes the read and write queues of the iuart to be flushed. In addi
tion, if the FLUSHR flag is set in the M _FLUSH message, the message will be
looped around. The iuart expects the line discipline module to handle the

Appendix G : Hardware Examp les G-1 3

382 STREAMS-based Console Driver

TCXONC ioctl and generate an appropriate M_START/M_STOP or
M_STARTI/M_STOPI message, which is then handled by the iuart. For EUC
ioctls that support of multi-byte characters, an M _IOCACK is sent. All other
ioctls requests receive an M_IOCNAK message from the iuart.

If activated from upstream by generation of M_STOP and M_START messages,
the iuart disables/ enables transmit interrupts from the DU ART so that momen
tary lapses in output can be produced. M_START and M_STOP can be used if
additional, settable characters are used for output flow controR. If activated
from upstream by the generation of M_STARTI and M_STOPI messages, the
iuart enables/ disables transmit interrupts from the DU ART so that momentary
lapses in input can be produced.

On receipt of the M _DELAY message upstream, the iuart causes a real time
delay to be introduced in the data stream. The time value for the delay is the
argument of the M _DELAY message.

All other messages received by the driver are freed.

Daemon Mode

Daemon mode is useful to those doing kernel debugging and driver develop
ment on the 3B2, if one has access to the daemon debugger. Sometimes there is
a need to tum off daemon mode rP> on the console. The console driver is set
up so that one can tum off access to daemon mode by setting the control char
acter to null. The following example shows how to do it:

The driver only tries to enter daemon mode if the entry character is not null. If
daemon mode is entered and layers(l) is used on the console, the terminal
should be in encoding mode. Otherwise, the system may panic.

G-1 4 Programmer's Gulde: STREAMS

382 STREAMS-based XT Driver

The STREAMS-based xt driver is a multi-channel multiplexed packet driver that
provides a windowing environment for all the AT&T windowing (dmd) termi
nals. This driver can be used over the STREAMS hardware drivers like the con
sole and ports driver, and also over several networks such as Starlan® and
Datakit®.

The STREAM5-based xt driver supports several AT&T windowing terminal such
as the 5620, 615, 620, and 630. It runs under the control of the layers command
[see layers(l), layers(5)) . The layers command initiates the windowing session,
creates and kills processes as windows are created and deleted, and shuts down
the session.

After a user has logged into a windowing terminal, the layers command does
the following to set up the STREAMS-based xt driver:

• The control channel (xt/000) is opened (see Figure G-1).

• The standard input line is set to raw mode so that raw data can be
received over the control channel.

• The ldterm module is popped from the standard input.

• The hardware driver is linked under the xt driver using the ioctl I_ LINK
[see streamio(7)] . Figure G-2 shows the STREAMS-based xt after I_LINK.

• The layers command then stays in a loop and reads the commands on the
control channel xt/000.

• When the first window (xt/001) is opened with a mouse device, the
ldterm module is pushed on the Stream (Figure G-2).

• More windows (maximum of seven) can now be created using the mouse
device.

Figure G-3 shows a typical STREAMS-based xt driver architecture with one con
trol channel and up to seven windows along with the line discipline module
pushed on each window.

Data coming from the windows (channels) is multiplexed (N-to-1) onto a single
Stream by the xt driver and data coming from the windowing terminal is de
multiplexed (1-to-N) and sent to the appropriate window. The ldterm module
does the termio(7) processing for each window.

Appendix G : Hardware Examples G-1 5

382 STREAMS-based XT Driver

Figure G-1 : STREAMS-based XT Driver (before l ink)

User

Kernel

G-1 6

Stream Head

ldtenn

Hardware

Driver

Stream Head

r - - - - - - - - - - - - - ,

STREAMS XT

(MUX Driver)

L - - - - - - - - - - - - - - - J

Programmer's Gulde: STREAMS

Figure G-2: STREAMS-based XT Driver (after l lnk}

Stream Head
(disabled)

control
channel
xt/000

382 STREAMS-based XT Driver

sh

Stream Head

ldterm

xt/001
r - ,

I

Upper Queues

STREAMS XT (MUX Driver)

Lower Queues

Appendix G: Hardware Examples G-1 7

382 STREAMS-based XT Driver

Figure G-3: STREAMS-based XT Driver

layers sh sh

User

Kernel
Stream Head Stream Head Stream Head

Control Channel

G-1 8

ldterm ldterm

xt/000 xt/001 xt/007

r - ,
I I
I I
1 xt multiplexor 1
I I
L - J

tty driver

Programmer's Gulde: STREAMS

------------------- 382 STREAMS-based XT Driver

Figure G-4 shows the STREAMS-based xt driver over Starlan using the Network
Access Unit (NAU) box. After logging into the machine via the NAU box, if the
layers is invoked, the Starlan protocol stack is linked under the xt multiplexor.
The same scenario can be achieved when logging into the rost remotely from
another machine.

Appendix G: Hardware Examples G-1 9

382 STREAMS-based XT Driver

Figure G-4: STREAMS-based XT Driver over Starlan

sh sh

User

,
Kernel

Stream Head Stream Head Stream Head

'

Control Channel

G-20

ldterrn ldterm

xt/000 xt/001 xt/007
' r - � - ,

I I
I I
1 xt multiplexor 1
I I
L - J

tty driver

· · · · · · · ·
. .
. .
: NAU Box :
. .
. .

Programmer's Guide: STREAMS

382 STREAMS-based XT Dr iver

The protocol used by the STREAMS xt driver is the following:

<1:1 I cntl:l I seq:3 I cbits:3> <dsize:8> <dsize bytes of data> <erc1> <ere2>

where the notation <> signifies a byte and x:n signifies n bits of x (for example,
cbits:3 signifies 3 bits of chits). Bits are numbered from high bit of the byte.
The ere is sent low byte first and applies to the entire packet except the two ere
bytes.

The protocol uses packets with a 2-byte header containing a control flag, 3-bit
sequence number, 3-bit channel number, and data size. The data part of the
packet may not be larger than 32 bytes. The trailer contains a CRC-16 code in 2
bytes. Each channel is double buffered. See xtproto(5) for more protocol
details.

Data Structures

The STREAMS-based xt driver is a multiplexing driver and hence has both the
normal and multiplexing qinit structures. The following are the qinit struc
tures:

st ruct qinit xt rinit = { nul ldev , xtupisrv , nxtopen,
nxt close , NULL , &xt_iinfo , NULL } ;

st ruct qinit xtwinit = { putq, xtosrv , nxtopen, nxt close ,
NULL , &xt_oinfo , NULL } ;

st ruct qinit m_xt rinit = { xt iput , xt is rv , nulldev ,
nulldev , NULL , &xt_i info , NULL } ;

st ruct qinit m_xtwinit = { nul ldev , xtwsrv, nulldev ,
nulldev, NULL , &xt_oinfo , NULL } ;

The xtrinit and xtwinit structures are used for upper multiplexing and m _xtrinit
and m_xtwinit structures are used for lower multiplexing.

The xt driver data structures also include the module_info and streamtab struc
tures.

Appendix G : Hardware Examples G-21

382 STREAMS-based XT Driver

The STREAMS-based xt driver also has the private data structure to maintain
the control and status information. Its private data structure xtctl has the for
mat:

The xt _ttyq field is used to save the downstream write queue. The xt chan
structure contains information on the active windows. The xt next is used to do
round robin scheduling of the upper write queues. The xt _ctlflg can have the
following flags:

• XT INUSE - xt device is in use

• XT _NET ACK - processing incoming network xt acknowledgement packet

• XT_ININPUT - don't scan in input routines

G-22 Programmer's Gulde: STREAMS

------------------ 382 STREAMS-based XT Driver

• XT _EXIT - C _EXIT in progress

• XT _UNLINK - UNLINK in progress

The xt _inbp field stores the incoming packet until it is processed. The
xt _pendjagent indicates that there is a pending JAGENT ioctl packet to be
received from the terminal. The fields xt incount, xt insize, xt intime, and
xt _instate are used to store information during the processing of an incoming
packet. The xt _instate can have the following values:

• PR_ NULL - a new input packet is expected.

• PR_ SIZE - expecting data byte count.

• PR_DATA - expecting actual data.

• PR_GETBUF - get a buffer for putting the received message.

The xt _hex field indicates if the transmissions are encoded. The trace and stats
fields are compile time options and are used for tracing and statistics informa
tion. Tracing and statistics won't be available if they are not compiled in.

One xtctl structure is allocated for each instantiation of the STREAMS-based xt
driver.

One xt chan is allocated for each window on the user's terminal. It has the fol
lowing format:

Appendix G : Hardware Examples G-23

382 STREAMS-based XT Driver

The xt_upq is used to store the upstream read queue of the window and the
xt _ctlp points to the control structure. The xt _jwinsize stores the window size
information. The xt _chfl.g can have the following flags:

• XT CTL - the channel is a control channel.

• XT _ON - the channel is open.

• XT _ WCLOSE - the channel is in process of being closed.

• XT _IOCTL - the channel is processing an ioctl.

• XT NONETFLOW - network xt flow control is disabled.

• XT_M_STOPPED - a channel stopped by user AS (control-s).

The xt_channo stores the channel number and xt_outbufs stores the number of
output buffers (default is 2). The xt _ msg is used to store the output packet
awaiting a positive acknowledgement (ACK) from the terminal. It is defined as:

Open Processing

The open routine allocates and initializes the private data structures. I t differen
tiates between a normal window open and a control channel open (channel 0).
The control channel open is the first open and normal window opens are the
subsequent open calls when a new window is opened with a mouse device. On
a control channel open, the allocation and initialization of structures for all win
dows is done.

The following steps are taken on a control channel open:

G-24 Programmer's Gulde: STREAMS

382 STREAMS-based XT Driver

• Only one layers process is allowed at a time. This is done using 0 _ EXCL
flag. If more than one layers process is invoked, EBUSY is returned.

• Opening of the control channel is regarded as one instantiation of the
STREAMS-based xt driver and an xtctl structure is allocated. The control
channel is then marked as being used (XT _ INUSE is set).

• A window channel structure xt chan is allocated and marked as control
channel being used (XT _ CTL I XT _ON).

• A window structure element xt _ upq of the control channel is initialized
with the upper read queue address.

• A window structure xt chan is initialized for each window.

• The q->q_ptr of the upper read and write queues are initialized with the
window structure address xt chan.

• Scanning is initiated .

The following steps are taken on a normal window open:

• A check is made to ensure that a channel number is in the legal range.

• A window structure xt _ chan is assigned and marked as being used
(XT_ON).

• A window structure element xt _ upq is initialized with the read queue
address.

• The q->q_ptr of the read and write queues is initialized with the window
structure address xt chan.

• The Stream head is notified to allocate a controlling tty, if not already
done.

If the open routine fails, the following errno values are returned:

• EINV AL - xt being opened as a module, or the first channel opened is not
a control channel.

• EBUSY - xt control channel opened with the exclusive flag previously.

• ENXIO - channel number of range.

Appendix G: Hardware Examples G-25

382 STREAMS-based XT Driver

• EAGAIN - someone is closing the supplied channel.

On success, 1 is returned.

Close Processing

The close routine cleans u p the allocated structures and pointers. I t differen
tiates between a normal window close and a control channel close (channel 0).
The control channel closes all the channels and dismantles the entire multi
plexor.

The following steps are taken on a control channel close:

• All the channels are looped through and the entire multiplexor is disman
tled.

• Enqueued messages are freed.

• All the structures are freed (deallocated).

• A hang up message is sent to all open windows.

• The control channel is released.

The following takes place in the normal window channel close:

• The structures are deallocated.

• The data on the write-side are flushed.

• The channel is released.

Data Flow

Figure G-5 shows the data flow in the STREAMS-based xt driver. The data on
the output (write-side) are processed by the upper write-side queue service pro
cedure and passed directly to the write-side put procedure of the hardware
driver linked under the multiplexor. The lower multiplexor write processing is
bypassed. Similarly, data on the input side (read-side) are processed by the
lower read queue put and service procedures and passed directly to the input
side put procedure of the ldterm that is pushed on the top of the multiplexor.
The upper multiplexor read processing is bypassed.

G-26 Programmer's Gulde: STREAMS

Figure G-5: STREAMS-based XT Driver Data Flow

Stream Head
(disabled)

Upper Queues

Stream Head

control
channel
xt/000

r - - - - - - -

382 STREAMS-based XT Driver

Stream Head

ldtenn

STREAMS XT (MUX Driver)

Lower Queues

Appendix G : Hardware Examples

Output
Messages

G-27

382 STREAMS-based XT Driver

Read-Side Processing

The read-side put procedure only queues messages when the allocation fails or
when other messages are already enqueued. Otherwise, all messages are pro
cessed right away.

The read-side put procedure sends M_SIG, M_PCSIG, M_BREAK, M_ERROR,
and M _HANGUP messages coming from downstream up to the control channel.
M_DATA is processed by the input processing routine at bottom of the multi
plexor.

The read-side input processing routine also does the following processing:

• It checks if the current mode is encoding. If so, it decodes the data (that
is, it converts the 6-bit data path to 8-bit data path).

• It processes PR_ NULL state that indicates that new packets are expected.

• It processes PR_ SIZE state which indicates that the next byte in the buffer
is the dsize byte of the xt protocol.

• It processes PR_ DATA and calls a routine to decipher the incoming packet
and to check and process three xt messages types (control packet, data
packet, and error packet).

The control packet processing is done by the routine processing positive and
negative acknowledgements received from the windowing terminal. The data
packet processing is done by the routine dealing with commands specified in
layers(S) (e.g. C_NEW). The windowing terminal commands processed are:
C_SENDCHAR, C_SENDNCHARS, C_UNBLK, C_EXIT, C_DELETE, C_NEW,
C_RESHAPE, C_DEFUNCT, C_NOFLOW, C_YESFLOW, and JAGENT.

Write-Side Processing

There is no put procedure processing done by the upper write queues. All mes
sages are queued for the service procedure.

The service procedure processing causes all the upper write queues to be emp
tied in a round robin fashion. If a channel was blocked before because the
downstream terminal driver queue was full, then the output is started from that
channel. Otherwise, output is started from the channel that is passed in to the
service procedure. The result is that a write on any channel will start emptying

G-28 Programmer's Guide: STREAMS

382 STREAMS-based XT Driver

of other channel queues that were blocked before. This method provides a fair
share processing for all windows.

Each channel is double-buffered (xt _ msg), so a process writing on a channel does
not block unless both packet slots on that channel are awaiting acknowledge
ments. When a positive acknowledgement is received, the packet slot is made
available.

Write queues are emptied one at a time in the following way:

• M_DATA - messages are packetized into maximum of 36 bytes and sent
to the windowing terminal. Each packet has a 2-byte header, up to 32
bytes of data, and 2 bytes of ere error correction code. If the write is more
than 32 bytes, the read pointer of the outgoing message buffer is incre
mented and the message is enqueued back on the queue.

• M_FLUSH - read and write queues are flushed depending on the argu
ment to the message. If the argument is FLUSHR, the message is turned
around with only the FLUSHR flag set.

• M_IOCDATA - this message is received in response to a previous
M _ COPYIN /M _ COPYOUT request. Transparent ioctl processing is con
tinued.

• M _IOCTL - There are four groups of ioctl request processed by the
STREAMS-based xt driver. The first group contains all the normal tty
ioctls described in termio(7). The termio(7) ioctl processing is done
assuming I_ STR style of ioctl because the Stream head does the conver
sion from transparent ioctls to I_ STR format. The second group of the
ioctls (J type) request concerns control of the windowing terminal
(described in the header file <sys/jioctl.h>). The third group of the ioctls
(X type) request concerns the configuration of the xt (described in the
header file <sys/nxth>). The ioctls (J and X type) are processed using
ioctl transparency. The fourth group of the ioctls requests concerns
streamio(7) multiplexing setup.

The EUC ioctls are sent an M_IOCACK message upstream to support multiple
byte character handling.

BSD/Xenix/V7 ioctls can be supported by pushing the ttcompat module on
each window.

Appendix G : Hardware Examples G-29

382 STREAMS-based XT Driver

All other messages are freed and ioctls are sent an M _IOCNAK message
upstream.

The following termio(7) ioctls are handled by the STREAMS-based xt driver:

• TCGETA, TCGETS - returns a termios structure in the M_IOCACK
response to TCGETS, a termio structure in the M _ IOCACK response to a
TCGETA.

• TCSETA, TCSETAF, TCSETAW, TCSETS, TCSETSF, TCSETSW - sets the
xt_ttycflags in the xt_chan private structure and sends an M_IOCACK
response upstream.

• TCSBRK, TCFLSH, TCXONC - sends an M _IOCACK response upstream.

TIOCSETP, TIOCGETP, TIOCEXCL, and TIOCNXCL handling can be done by
the ttcompat module.

The STREAMS-based xt driver also handles the following windowing ioctls:

• JTIMO, JTIMOM - sets the timeout parameters for the protocol by sending
an IOCDATA packet to the terminal. The packet contains four bytes in
two groups; the value of the receive timeout in milliseconds (the low 8
bits followed by the high 8 bits) and the value of the transmit timeout (in
the same format). The JTIMO ioctl is converted to JTIMOM ioctl.

• JMPX,]TYPE - sends an M _IOCACK message upstream.

• TIOCGWINSZ, JWINSIZE - returns a winsize structure in the M _IOCACK
response to TIOCGWINSZ and a jwinsize structure in the M_IOCACK for
response to JWINSIZE.

• }BOOT - sends an IOCDATA packet with the command and the channel
number to the terminal. It prepares the terminal to a new terminal pro
gram into a designated layer. Also an M_IOCACK message is sent
upstream.

• JZOMBOOT - actions are similar to JBOOT, but the terminal does not exe
cute the program after loading.

•]TERM - sends an IOCDATA packet with the command and the channel
number to the terminal. This command kills the layers program, restores
the default window program, and exits layers. Also an M _IOCACK mes
sage is sent upstream.

G-30 Programmer's Gulde: STREAMS

382 STREAMS-based XT Driver

• JTRUN - runs a UNIX system command in the specified channel (layer).
Also an M_IOCACK message is sent upstream.

• JAGENT - sends a command byte string to the te�nal and waits for a
reply byte string to be returned. The command bytes are described in
jagent(5).

• JXTPROI'O - sets xt protocol type [see also xtproto(5)] .

The following xt (X type) ioctls are handled by the STREAMS-based xt driver:

• XTIOCHEX - turns on the encoding mode and sends an M _IOCACK mes
sage upstream.

• XTIOCTRACE - copies out the trace record and sends an M_IOCACK
message upstream.

• XTIOCNOI'RACE - turns off the tracing mode and sends an M _IOCACK
message upstream.

• XTIOCSTATS - copies out the stored xt statistics and sends an
M_IOCACK message upstream.

• XTIOCTYPE - sends an M_IOCACK message upstream (similar to JMPX
ioctl).

The following streamio(7) ioctls are handled by the STREAMS-based xt driver.

• I LINK - links a hardware driver underneath the STREAMS-based xt
driver. It saves the hardware driver queue address in the private struc
ture and the private structure address in the q->qytr of the queue. After
link processing, JTIMOM ioctl processing is done to initialize the timers
and to send an M_IOCACK message upstream.

• I_ UNLINK - nulls out all the structure elements initialized by the I_ LINK
ioctl and sends an M_IOCACK message upstream.

Appendix G: Hardware Examples G-31

382 STREAMS-based XT Driver

Multiplexing

Multiplexing in the STREAMS-based xt driver i s done with the help of the pro
tocol information and using information stored in private structures during
open and link time. The packets that are sent to the windowing terminal are
packaged with a channel number. This channel number is obtained from the xt
driver's private data structure that is stored in q->qptr during open of a window.
Similarly, data coming from the terminal come with a channel number. Using
the channel number the upper window queue can be derived.

Flow Control

The flow control of data is done using both the STREAMS flow control and the
STREAMS-based xt driver flow control.

STREAMS Flow Control

On the write-side, the canput() routine is used to determine if the driver's queue
downstream is full. If it is full, the data are put back on the upper write queue.
When the flow control is relieved, the lower write service procedure is called by
the STREAMS mechanism, which enables the upper write service procedure to
start sending the data again. The purpose of lower write service procedure is
only to enable the upper queues in case of flow control.

If the data cannot be sent upstream because of canput() failure, the data are
freed. The protocol is expected to recover from this situation. Since a positive
acknowledgement is not sent to the data packet that was freed, the protocol re
transmits the data after a timeout interval.

XT Driver Protocol Flow Control

The windowing terminal controls the packet flow using the UNBLK command
in a positive acknowledgement packet. A control packet from the terminal to
the host contains ACK and UNBLK as data characters. If UNBLK is sent with
the ACK, the host assumes that more data could be sent to the channel. If
UNBLK is not accompanied with the ACK, the host slows the data flow to that
channel and stops all the data when a second ACK with no Ul\JBLK is received.
Two UNBLK packets directed to the blocked channel are required to restore the
channel to full throughput. There is no UNBLK command from the host to the

G-32 Programmer's Gulde: STREAMS

------------------- 382 STREAMS-based XT Driver

terminal and, therefore, no explicit flow control of data packets exists from the
terminal to the host. However, the host controls the data flow by not acknowl
edging the packets and just freeing them, expecting the protocol to recover.

Scanning

The STREAMS-based xt driver has routines for scanning the time-out input and
output packets. Since the timeout functions are called at a high priority, the
scanning has been split between a routine calling a high priority and a routine
calling at a service procedure priority.

The routine calling at a high priority is triggered off from the open routine and
is run at regular time intervals. This routine schedules the upper write service
procedure to be run if there is activity on channels. The write service procedure
invokes its scanning routine to scan for timed-out input and output packets.
First, the routine checks if the input packet is received within the timeout inter
val. If not, the routine resets the input state and performs clean-up functions.
Next, it runs through all the channels awaiting an output ACK and if it notices
any timeout situations, it resends the output packets.

Cyclic Redundancy Check

The STREAMS-based xt driver does error checking on the transmissions using
cyclic redundancy check (ere) byte generation. Two ere bytes are generated
using the polynomial x**16 + x"'*15 + x**2 + 1 that has a 64 byte look-up table.
These two bytes are added to the end of each output packet sent to the win
dowing terminal with the lowest byte first.

Encoding

The STREAMS-based xt driver supports encoded transmissions. Encoded
transmissions are required when using a binary protocol with certain local-area
networks and data switches. The encoding hides the ASCII XON and XOFF
character, which the transmission system misinterprets as flow control.

Appendix G : Hardware Examples G-33

382 STREAMS-based XT Driver

When using layers on the 3B2 console, encoded transmissions should be done
by turning the encoding option ON on the terminals. Daemon mode (control-P)
cannot be used when using layers on the console. ' When layers or the xt is used on the console, the console device (a Stream) goes into a state where it cannot be opened since it is linked under the xt

multiplexor. Therefore, console messages don't go through, and writes to
the console (dev/console) fail . Console logging mechanism will redirect the
console messages.

G-34 Programmer's Gulde: STREAMS

Extended STREAMS Buffers

STREAMS maintains its own memory resources for message storage. However,
system developers need not be constrained to allocating STREAMS buffers,
because it can be done dynamically or by taking advantage of a system support
ing extended buffers.

An ability to share data buffers between the kernel and 1/0 cards is supported
by some hardware. If the a module or driver so chooses, the shared buffers can
be attached to a data block and processed as if the data were part of a normal
STREAMS message, thus eliminating a copy of the buffer into kernel space.

With the hardware supporting extended buffers, data received from the network
are placed in the dual access RAM (DARAM) section of the 1/0 card. Since
DARAM is shared memory between the host and the card, data transfer by the
controller from I/0 card to kernel is eliminated.

The following two figures show pictorial views of extended buffers. (Chapter 5
describes how to allocate and free extended STREAMS buffers.) They show the
copies necessary to transfer data from the network to user space and from the
user space to the network. In each case, the I/O card receives data from the
network and places data into an internal buffer on the card. Figure G-6 differs
from Figure G-7 in that it makes use of DMA to transfer data from the 1/0 card
to a kernel resident data buffer. The I/O card interrupts the host computer ack
nowledging data are present and ready to be read. The network access unit
(NAU) driver allocates enough STREAMS buffers to hold data. It passes the
address and length of the buffers to the 1/0 card and from there the card
transfers data from its buffer to the data buffer resident in the kernel. The data
are sent upstream for processing. Once data reach the Stream head, data are
copied to the user space via copyout().

A similar process occurs when data are transmitted from user space to the net
work. Data are copied into the kernel via copyin(), packaged into a message
block and sent downstream. The driver issues an interrupt to signal the I/O
card that data are ready to be read. The 1/0 card then transfers the data from a
kernel buffer and places data into a buffer on the card itself, and on to the net
work.

Appendix G: Hardware Examples G-35

Extended STREAMS Buffers

Figura G-6: UNIX 1/0 on 382

User Process ' � - - !- {OPYl!l!>_ - - �.- - - - - - - -1 - -�IQ- -

Stream Head

I '
Module

Kernel Buffer
- - - - - - - - - - �=-==::!- - - - - -

Kernel

1/0 Card

NAU

L_f'� ... _;,..._ _ ____,
Card Buffer

'
data to network , 1. data from network

In Figure G-7, data are also received from the network by the 1/0 card. How
ever, unlike in the previous figure, data are placed in a section of the 1/0 card
that is shared between the kernel and the card. The card interrupts the host
computer when data are ready for manipulation. Since DARAM is shared

G-36 Programmer's Guida: STREAMS

Extended STREAMS Buffers

memory, there is no need for the driver to allocate a data buffer and pass its
address to the card. Instead, it packages the buffer located in DARAM into a
STREAMS message using the STREAMS utility routine esballoc(), and sends it
upstream for processing.

On the other hand, the transfer of data between the kernel and a user resembles
the previous example. A copyin() and copyout() are issued to copy data from
user space to kernel and from kernel to user, respectively. On the write-side the
driver still has to copy data from a STREAMS buffer to DARAM.

Appendix G: Hardware Examples G-37

Extended STREAMS Buffers

Figure G-7: UNIX 1/0 on a 386 Box

User Process

'

in() U�r
-
- - l -�opy

Kernel i - - - - - - -
-

-
- - - _ -1- _ _ cgpyo_u!()

'

Stream Head

'

I

Module

I

pointer reference

Kernel
NAU - - - -

- - - - -
- -

-

1/0 Card i oARAM I
'

'

data to netw ork 1 d ata from network

G-38 Programmer's Gulde: STREAMS

Glossary

autopush

back-enable

blocked

clone device

close routine

controlling Stream

DOI

DKI

downstream

device driver

Glossary

A STREAMS mechanism that enables a pre-specified
list of modules to be pushed automatically onto the
Stream when a STREAMS device is opened. This
mechanism is used only for administrative purposes.

To enable (by STREAMS) a preceding blocked
queue's service procedure when STREAMS deter
mines that a succeeding queue has reached its low
water mark.

A queue's service procedure that cannot be enabled
due to flow control.

A STREAMS device that returns an unused
major/minor device when initially opened, rather
than requiring the minor device to be specified by
name in the open(2) call.

A procedure that is called when a module is popped
from a Stream or when a driver is closed.

A Stream above the multiplexing driver used to
establish the lower connections. Multiplexed Stream
configurations are maintained through the controlling
Stream to a multiplexing driver.

Device Driver Interface. An interface that facilitates
driver portability across different UNIX system ver
sions on AT&T hardware.

Driver-Kernel Interface. An interface between the
UNIX system kernel and different types of drivers. It
consists of a set of driver-defined functions that are
called by the kernel. These functions are entry points
into a driver.

A direction of data flow going from the Stream head
towards a driver. Also called write-side and output
side.

A Stream component whose principle functions are
handling an associated physical device and
transforming data and information between the
external interface and Stream.

1

Glossary

2

driver

enable

FIFO

A module that fonns the Stream end. It can be a
device driver or a pseudo-device driver. It is a
required component in STREAMS (except in
STREAMS-based pipe mechanism), and physically
identical to a module. It typically handles data
transfer between the kernel and a device and does
little or no processing of data.

A term used to describe scheduling of a queue's
service procedure.

First-In-First-Out. A term for named pipes in UNIX
System V. This term is also used in queue schedul-
ing.

flow control A STREAMS mechanism that regulates the rate of
message transfer within a Stream and from user
space into a Stream.

hardware emulation module

input side

line discipline

lower Stream

master driver

A module required when the terminal line discipline
is on a Stream but there is no terminal driver at the
end of a Stream. This module understands all ioctls
necessary to support terminal semantics specified by
termio(7) and termios(7).

A direction of data flow going from a driver towards
the Stream head. Also called read-side and
upstream.

A STREAMS module that performs termio(7) canoni
cal and non-canonical processing. It shares some
termio(7) processing with a driver in a STREAMS
terminal subsystem.

A Stream connected below a multiplexor pseudo
device driver, by means of an I_LINK or !_PLINK
ioctl. The far end of a lower Stream terminates at a
device driver or another multiplexor driver.

A STREAMS-based device supported by the pseudo
terminal subsystem. It is the controlling part of the
pseudo-terminal subsystem and is also called ptm.

Programmer's Gulde: STREAMS

message

message block

message queue

message type

module

multiplexor

named Stream

open routine

Glossary

Glossary

One or more linked message blocks. A message is
referenced by its first message block and its type is
defined by the message type of that block.

A triplet consisting of a data buffer and associated
control structures, an msgb structure and a datab
structure. It carries data or information, as identified
by its message type, in a Stream.

A linked list of zero or more messages connected
together.

A defined set of values identifying the contents of a
message.

A defined set of kernel-level routines and data struc
tures used to process data, status and control infor
mation on a Stream. It is an optional element, but
there can be many modules in one Stream. It con
sists of a pair of queues (read queue and write
queue), and it communicates to other components in
a Stream by passing messages.

A STREAMS mechanism that allows messages to be
routed among multiple Streams in the kernel. A
multiplexing configuration includes at least one mul
tiplexing pseudo-device driver connected to one or
more upper Streams and one or more lower Streams.

A Stream, typically a pipe, with a name associated
with it via a call to fattach(3C) (i.e., a mount opera
tion). This is different from a named pipe (FIFO) in
two ways: a named pipe (FIFO) is unidirectional
while a named Stream is bidirectional; a named
Stream need not refer to a pipe but can be another
type of a Stream.

A procedure in each STREAMS driver and module
called by STREAMS on each open(2) system call
made on the Stream. A module's open procedure is
also called when the module is pushed.

3

Glossary

4

packet mode

persistent link

pipe

pop

A feature supported. by the STREAMS-based
pseudo-terminal subsystem. It is used to inform a
process on the master side when state changes occur
on the slave side of a pseudo-tty. It is enabled by
pushing a module called pckt on the master side.

A connection below a multiplexor that can exist
without having an open controlling Stream associ-
ated. with it.

Same as a STREAM�based. pipe.

A term used when a module that is immediately
below the Stream head is removed.

pseudo-device driver A software driver, not directly associated. with a phy
sical device, that performs functions internal to a
Stream such as a multiplexor or log driver.

pseudo-terminal subsystem

push

pushable module

put procedure

A user interface identical to a terminal subsystem
except that there is a process in a place of a
hardware device. It consists of at least a master dev
ice, slave device, line discipline module, and
hardware emulation module.

A term used when a module is inserted. in a Stream
immediately below the Stream head.

A module interposed. between the Stream head and
driver. It performs intermediate transformations on
messages flowing between the Stream head and
driver. A driver is a non-pushable module.

A routine in a module or driver associated. with a
queue which receives messages from the preceding
queue. It is the single entry point into a queue from
a preceding queue. It may perform processing on
the message and will then generally either queue the
message for subsequent processing by this queue's
service procedure, or will pass the message to the
put procedure of the following queue.

Programmer's Guida: STREAMS

queue

read-side

read queue

remote mode

SAD

schedule

service interface

service procedure

Glossary

Glossary

A data structure that contains status information, a
pointer to routines processing messages, and pointers
for administering a Stream. It typically contains
pointers to a put and service procedure, a message
queue, and private data.

A direction of data flow going from a driver towards
the Stream head. Also called upstream and input
side.

A message queue in a module or driver containing
messages moving upstream. Associated with the
read(2) system call and input from a driver.

A feature available with the pseudo-terminal subsys
tem. It is used for applications that perform the
canonical and echoing functions normally done by
the line discipline module and tty driver. It enables
applications on the master side to turn off the canon
ical processing.

A STREAMS Administrative Driver that provides an
interface to the autopush mechanism.

To place a queue on the internal list of queues which
will subsequently have their service procedure called
by the STREAMS scheduler. STREAMS scheduling is
independent of the UNIX System V process schedul
ing.

A set of primitives that define a service at the boun
dary between a service user and a service provider
and the rules (typically represented by a state
machine) for allowable sequences of the primitives
across the boundary. At a Stream/user boundary,
the primitives are typically contained in the control
part of a message; within a Stream, in M_PROTO or
M_PCPROTO message blocks.

A routine in module or driver associated with a
queue which receives messages queued for it by the
put procedure of that queue. The procedure is called
by the STREAMS scheduler. It may perform

5

Glossary

service provider

service user

slave driver

standard pipe

Stream

STREAMS-based pipe

Stream end

Stream head

STREAMS

6

processing on the message and generally passes the
message to the put procedure of the following queue.

An entity in a service interface that responds to
request primitives from the service user with
response and event primitives.

An entity in a service interface that generates request
primitives for the service provider and consumes
response and event primitives.

A STREAMS-based device supported by the pseudo
terminal subsystem. It is also called pts and works
with a line discipline module and hardware emula
tion module to provide an interface to a user process.

A mechanism for a unidirectional flow of data
between two processes where data written by one
process become data read by the other process.

A kernel aggregate created by connecting STREAMS
components, resulting from an application of the
STREAMS mechanism. The primary components are
the Stream head, the driver, and zero or more push
able modules between the Stream head and driver.

A mechanism used for bidirectionall data transfer
implemented using STREAMS, and sharing the pro
perties of STREAMS-based devices.

A Stream component furthest from the user process,
containing a driver.

A Stream component closest to the user process. It
provides the interface between the Stream and the
user process.

A kernel mechanism that provides the framework for
network services and data communication. It defines
interface standards for character input/output within
the kernel, and between the kernel and user level.

Programmer's Gulde: STREAMS

tty driver

upper Stream

upstream

water mark

write queue

write-side

Glossary

Glossary

The STREAMS mechanism comprises integral func
tions, utility routines, kernel facilities, and a set of
structures.

A STREAMS-based device used in a terminal subsys
tem.

A Stream that terminates above a multiplexor. The
beginning of an upper Stream originates at the
Stream head or another multiplexor driver.

A direction of data flow going from a driver towards
the Stream head. Also called read-side and input
side.

A limit value used in flow control. Each queue has a
high water mark and a low water mark. The high
water mark value indicates the upper limit related to
the number of bytes contained on the queue. When
the enqueued characters in a queue reach its high
water mark, STREAMS causes another queue that
attempts to send a message to this queue to become
blocked. When the characters in this queue are
reduced to the low water mark value, the other
queue will be unblocked by STREAMS.

A message queue in a module or driver containing
messages moving downstream. Associated with the
write(2) system call and output from a user process.

A direction of data flow going from the Stream head
towards a driver. Also called downstream and out
put side.

7

. �- -:
· . _ . . .

. · : , ·

" -

"' . .

. . -.: _•

· : . .:._ :

· . ,

·;. · · . . • . ' "

· �: .

� - , '. : .

. . ·. - .

. . -;,.�

: . . :.�

, -.. : · ·

-, . .

- .: : ,
. . '. -

1 . ·

-·._-.

- � . .

.· o · · ·

:. : ·. '" �

'.- _ ; .

· . . , _:

' : .,: : .

· ...:·_

t: .= ·

Index

A
asynchronous input/ output, in pol

ling 6: 6
asynchronous protocol Stream, exam

ple 4: 4- 1 1
autopush(lM) E: 6

B
back-enable of a queue 5: 29
background job, in job control 6: 9
bidirectional transfer, example

7: 24-29

c
cloning (STREAMS) 9: 1 8
connld(7) 1 1 : 1 2
console G: 1 1
controlling terminal 6: 13
contty G: 10
copyreq structure A: 10
copyresp structure A: 1 1
crash(lM), STREAMS debugging

0 : 2-6

D
daemon mode, in STREAMS-based

console G: 1 4
data block (STREAMS)

linkage 5: 6
structure 5: 5

data flow, in xt driver G: 26
device numbers 9: 5-6

Index

downstream, definition 2: 3
driver

classification 9: 1
configuration 9: 2
device numbers 9: 5-6
entry points 9: 3
interface to STREAMS 7: 37-4 1
overview 9: 1-6
STREAMS 2: 1 4, 9 : 6-8
STREAMS-based console G: 1 0- 1 4
STREAM5-based ports G : 2-9
STREAMS-based sxt 1 2: 3
STREAMS-based xt G: 1 5-34
writing a driver 9: 3-5

E
encoded transmission, in xt driver

G: 33
EUC handling in ldterm(7) 1 2 : 8
expedited data 5: 3, 7: 35
extended STREAMS buffers 5: 60-61

allocation 5: 60
freeing 5: 61
in different hardware G: 35-38

external device number 9: 5-6

F
fattach(3C) 1 1 : 7
fdetach(3C) 1 1 : 8
FIFO (STREAMS) 1 1 : 1

basic operations 1 1 : 1-6
flush 1 1 : 6
queue scheduling 4: 2

file descriptor passing 1 1 : 9

1-1

Index

flow control 5: 28-32
definition 2: 7
in driver 9: 1 6
in line discipline module 8: 1 2
in module 8 : 1 1- 1 3
in xt driver G : 32
routines 5: 29-32

flush handling
description 7: 31-35
flags 7: 31 , B: 16
in driver 9 : 1 2
in line discipline 7: 31
in pipes and FIFOs 1 1 : 6
priority band data 7: 35
priority band data example 7: 36
read-side example 7: 34
write-side example 7: 33

foreground job, in job control 6: 9

G
getmsg(2) 5: 1 o
getpmsg function 5: 1 2
grantpt(3C) 1 2 : 25

with pseudo-tty driver 1 2: 22

H
hardware emulation module

1 2: 13- 1 4

input/output polling 6 : 1 - 7
internal device number 9 : 5-6
interrupts

in console driver G: 1 2

1-2

in ports driver G: 8
iocblk structure A: 9

with M IOCTL B: 3
ioct1(2)

console driver write-side G: 1 3
general processing 7: 1 0- 1 2
handled by ports driver G : 6
handled by ptem(7) 1 2: 1 7
hardware emulation module 1 2: 1 3
I A'IMARK 5: 1 9
I CANPUT 5 : 1 8
I CKBAND 5: 1 8
I GETBAND 5 : 1 8
!_LINK 1 0 : 6 , B : 3
I LIST 7: 29
!_PLINK 10 : 32, B: 3
I POP 3: 1 0
I_ PUNLINK 1 O: 32, B: 3
I PUSH 3: 1 0
I_RECVFD 1 1 : 9 , 8 : 6
I_SENDFD 1 1 : 9, 8: 6
I SETSIG events 6: 6
I_STR 3: 1 4, B: 3
I_STR processing 7: 1 2- 14
I_ UNLINK 1 0: 1 1 , B: 3
supported by ldtenn(7} 1 2: 7
supported by master driver 1 2 : 24
termio(7) handled by xt driver

G: 30
transparent 7: 1 4-29
xt driver windowing G: 30

isastream(3C) 1 1 : 9

J
job control 6: 9- 1 2

terminology 6 : 9- 10

Programmer's Gulde: STREAMS

L
ldterm(7) 1 2: 3

ldterm JOOd structure 1 2: 4

LIFO, module add/remove 3: 1 3

line discipline module
close 1 2: 5

description 1 2: 3- 1 2

in job control 6 : 1 1

in pseudo-tty subsystem 1 2: 1 5

ioctl(2) 1 2: 7

open 1 2: 5

linkblk structure A: 1 2

lower multiplexor 2 : 1 7

lower Stream 2 : 1 5

M
major device number 9: 5

master driver
in pseudo-tty subsystem 1 2 : 1 5

open 1 2: 22

MAX INPUT G: 9

M BREAK B: 2

M COI?YIN B: 1 4

transparent ioctl example
7: 1 8-21

M COI?YOUT B: 1 5

transparent ioctl example
7: 22-24

with M IOCTL B: 6

M CTL B: 2

with line discipline module 1 2: 3

M _DATA 2 : 10, B: 2

xt driver write-side processing
G: 29

M DELAY B: 2

M ERROR B: 1 5

Index

message block (STREAMS) 2: 4

linkage 5: 6
structure 5: 4

message processing routines
(STREAMS) 4: 1 - 3

design guidelines 7 : 44-46

message queue (STREAMS), priority
5: 1 5- 1 9

message (STREAMS) 2 : 9

allocation 5: 54

control information 2: 10 . 5: 47

definition 2: 3

freeing 5: 54

handled by pckt(7) 1 2: 21

handled by ptem(7) 1 2: 1 8
high priority 5: 2, B: 1 4-21

ldterm(7) read-side 1 2: 5

ldterm(7) write-side 1 2: 7

linkage 5: 6

M DATA 2: 1 0

M I?CI?ROTO 2 : 1 0

M PROTO 2 : 1 0

ordinary 5: 1 , B : 2- 1 3

processing 5: 26

recovering from allocation failure
5: 57

sending/receiving 5: 8

service interface 5: 34-47

structures 5 : 4-6, A: 6-8
types 2: 10, 5: 1

M FLUSH B: 1 6

flags B: 1 6

in module example 8: 8
packet mode 1 2: 21

xt driver write-side processing
G: 29

M HANGUi? B: 1 7

minor device number 9: 5

Index

1-3

Index

M IOCACK 8: 1 7

with M COPYOUT 8: 1 5

with M -IOCTL 8: 4

M IOCDATA 8: 1 8

xt driver write-side processing
G: 29

M IOCNAK 8: 1 9

with M COPYOUT 8 : 1 5

with M IOCTL 8: 4

M IOCTL 8: 3-6

transparent 8: 4

with M COPYOUT 8: 1 5

xt driver write-side processing
G: 29

MORECTL 5: 47

MOREDATA 5: 47

M PASSFP 8: 6

M_PCPROTO 2: 1 0, 8: 1 9

M PCRSE 8: 20

M PCSIG 8: 20

M_PROTO 2: 1 0, 8: 7-8

M READ 8: 20

M RSE 8: 8

M SETOPTS 8: 8- 1 3

SO FLAG 8: 9- 1 3

SO_READOPT options 5 : 1 3

so WROFF value 5: 1 4

with ldterm(7) 1 2: 5

M SIG 8: 1 3

in signaling 6 : 7

M START 8: 20

M START! 8: 2 1

M STOP 8: 20

M STOP! 8: 2 1

multiplexing
in xt driver G: 32

STREAMS 2: 1 5- 1 9

multiplexor

1-4

building 1 0: 2- 1 0

controlling Str'eam 1 o : 8

data routing 1 0 : 1 2

declarations 10 : 20

design guidelines 1 o: 37

dismantling 1 0: 1 1

driver 1 0: 1 9- 3 1

example 1 0: 1 6- 1 8

lower 1 0: 1

lower connection 1 o: 1 3- 1 5

lower disconnection 1 o : 1 5

lower read put procedure 1 0: 28- 3 1
lower write service procedure

1 0: 28

persistent links 1 0: 32-36

upper 1 0 : 1

upper write put procedure
1 0: 23-26

upper write service procedure
1 0: 27

multiplexor ID
in multiplexor building 1 0 : 6

in multiplexor dismantling 1 0 : 1 1

N
named pipe (see FIFO)
named Stream

description 1 1 : 7-9

fattach(3C) 1 1 : 7
fdetach(3C) 1 1 : 8
file descriptor passing 1 1 : 9

isastream(3C) 1 1 : 9

remote 1 1 : 1 0

NSTRPUSH parameter 3: 1 0 , E: 5

Programmer's Guide: STREAMS

0
0 NDELAY

close a Stream 3: 1 1
with M SETOPTS B: 1 1

0 NONBLOCK
close a Stream 3: 1 1
with M SETOPTS 8: 1 1

p
packet mode

description 1 2: 21
messages 1 2 : 21

pckt(7) 12 : 21
persistent link 1 0 : 32-36
PIPE BUF 1 1 : 5
pipemod STREAMS module 1 1 : 6
pipes, STREAMS (see STREAMS-

based pipe)
poll(2) 6: 1
pollfd structure 6: 3
polling

error events 6: 5
events 6: 1
example 6: 3-6

priority band data 5: 3, 7: 35
flow control 5: 30
flush handling example 7: 36
ioctl(2) 5: 1 8
routines 5 : 1 6
service procedure 5 : 27

pseudo-tty emulation module
1 2: 1 7-20

pseudo-tty subsystem 1 2: 1 5
description 1 2: 1 5- 26
drivers 1 2: 22-25
ldtenn(7) 1 2: 1 5

Index

messages 1 2 : 1 8
packet mode 1 2: 21
remote mode 1 2: 20

ptem structure 1 2 : 1 9
ptem(7) 1 2 : 1 7, 1 9
ptrn (see master driver)
pts (see slave driver)
ptsnarne(3C) 1 2: 26

with pseudo-tty driver 1 2: 22
putrnsg(2) 5: 9
putprnsg function 5: 1 1

R
read-side

console driver service procedure
G: 1 3

console processing G: 1 2
definition 2 : 3
ldterrn(7) messages 1 2: 5
ldterrn(7) processing 1 2: 5

Index

ports driver service procedure G: 9
put procedure 8: 1
xt driver G: 28

s
SAD (see STREAMS Administrative

Driver)
scanning, in xt driver G: 33
service interface 5: 35-37

definition 5: 34
library example 5: 38-47
rules 5: 47

service primitive 5: 37
in service procedure 5: 39

service provider 5: 37
accessing 5 : 40

1-5

Index

closing 5: 43

receiving data 5: 45

sending data 5: 44

signal(2) 6: 1

signals
extended 6: 8
in job control management 6: 1 1

in STREAMS 6: 7

slave driver
in pseudo-tty subsystem 1 2: 1 5

open 1 2: 22

SO_FLAG, in M_SETOPTS B: 9- 1 3

strapush structure E : 8
strbuf structure 5: 1 0

strchg(l) 7 : 29

strconf command 7: 29

STRCTLSZ parameter E: 6

Stream
controlling terminal 6: 1 2

definition 2 : 1

hung-up 6: 1 2

Stream construction 3: 3- 1 1

add/remove modules 3 : 1 0

close a Stream 3: 1 1

define module/ driver 3: 5

example 3: 1 1 - 1 6

open a Stream 3: 5

queue structures 3: 3

Stream head
definition 2: 1

processing control 5: 1 2

STREAMS
3B2 configuration G: 1

basic operations 2: 5-8
benefits 2: 20-24

components 2: 9- 1 4

configuration E: 1 - 9

definition 2: 1

1-6

header files 7: 48
manual pages F: 1-2

master . d E: 3

multiplexing 2: 1 5- 1 9

system calls 2: 5 , 3 : 1

tunable parameters E: 5-6

STREAMS Administrative Driver
E: 7-9

STREAMS data structures A: 1- 1 a
design 7: 47

dynamic allocation 7: 47

STREAMS debugging D: 1 - 1 9

crash(lM) D: 2-6

dump module D: 6- 1 7

error and trace logging D: 1 7- 1 9

STREAMS driver 2: 1 4, 9: 6-8
accessible functions 7: 49

cloning 9: 1 8
close routine design 7: 43

declarations 7: 2

definition 2: 1

design guidelines 7: 42-50, 9: 30

environment 7: 1

flow control 9: 1 6

flush handling 9: 1 2

interface 7: 40

ioct1(2) 7: 9-30

loop-around 9: 20-29

open routine design 7: 43

printer driver example 9: 9- 1 6

pseudo-tty 1 2 : 22-25

pseudo-tty subsystem master 1 2 : 1 5

pseudo-tty subsystem slave 1 2: 1 5

STREAMS message queues 2 : 1 0

priority 2 : 1 1 - 1 2

STREAMS module 2 : 1 2- 1 4, 8 : 1 - 1 0

accessible functions 7 : 49

autopush facility E: 6, 9

Programmer's Gulde: STREAMS

close routine design 7: 43

connld(7) 1 1 : 1 2

control information 2 : 1

declarations 7: 2

definition 2: 1

design guidelines 7: 42-50, 8: 1 4

environment 7 : 1

filter 8: 5

flow control 8: 1 1 - 1 3

ioctl(2) 7: 9-30

line discipline 1 2: 3

null module example 7: 6

open routine design 7: 43
ptem(7) 1 2: 1 7

read-side put procedure 8: 1

routines 8: 1 - 5

service interface example 5: 47-53

service procedure 8: 3

status information 2: 1

write-side put procedure 8: 3

STREAMS queue
definition 2: 3

equeue structure 5: 22

flags 5: 21

overview 2: 9

qband structure 5: 22

queue structure 5: 1 9

structures A : 1-6

using equeue information 5: 24

using qband information 5: 24

using queue information 5: 21

STREAMS scheduler, in service pro
cedure 4: 2

STREAMS utility routines C: 1 - 2 1

STREAMS-based console driver
description G: 1 0- 1 4
open G : 1 2

read-side processing G: 1 2

Index

read-side service procedure G: 1 3

write-side processing G : 1 3

STREAMS-based pipe 2 : 1

atomic write 1 1 : 5

basic operations 1 1 : 1 -6

creation 3: 8

creation errors 1 1 : 2

definition 1 1 : 1

PIPE BUF 1 1 : 5

STREAMS-based ports driver
close G: 5

description G: 2-9

interrupt procedure G: 8

ioctl G: 6

open G: 4

read-side service procedure G: 9

write-side put procedure G: 5

write-side service procedure G: 7

STREAMS-based pseudo-terminal
subsystem (see pseudo-tty sub
system)

Index

STREAMS-based sxt driver 1 2: 3

STREAMS-based terminal subsystem
(see tty subsystem)

STREAMS-based xt driver
dose control channel G : 26

dose normal window G: 26

data flow G: 26
description G: 1 5-34
encoded transmission G: 33

error checking G: 33
flow control G: 32

open control channel G: 24

open normal window G: 25

scanning G: 33
set up G: 1 5

streamio(7) G : 31

termi.o(7) G : 30

1-7

Index

windowing ioctl G: 30
X type ioctl G: 3 1

strioctl structure 3: 1 5, A: 1 2

STRMSGSZ parameter E : 5

stroptions structure A: 1 3

STRTHRESH parameter E: 6

strtty structure G: 3

synchronous input/ output, in pol-
ling 6: 1

syscon G: 1 0

systty G: 1 0

T
t buf structure G: 3

termi.o(7} 6: 1 1

default flag values 1 2: 3

xt driver G: 30

termi.ox(7}, support 1 2: 1 2

transparent ioctl
M_OOPYIN example 7: 1 8- 2 1

.M _ OOPYOUT example 7: 22-24

messages 7: 1 7

processing 7: 1 4-29

tty subsystem
benefits 1 2: 1

description 1 2: 1 - 1 4

hardware emulation module
1 2: 1 3- 1 4

ldtez:m(7) 1 2 : 3

setup 1 2: 2

u
unique connection (STREAMS)

1 1 : 1 1 - 1 3

unlockpt(3C) 1 2 : 26

1-8

with pseudo-tty driver 1 2 : 22

upper multiplexor 2: 1 7

upper Stream 2: 1 5

upstream 2: 3

v
virtual system console (see syscon)

w
windowing terminal commands

G: 28

write-side
console driver processing G: 1 3

definition 2 : 3

ldtez:m(7) 1 2: 7

ports driver put procedure G: 5
ports driver service procedure G: 7

put procedure 8: 3

xt driver G: 28

x
xt chan structure G: 23

xtctl structure G: 22

xt _ msq structure G: 24

Programmer's Gulde: STREAMS

	2016_09_17_01_02_28
	2016_09_17_01_04_24
	2016_09_17_01_06_04
	2016_09_17_01_08_00
	2016_09_17_01_10_09
	2016_09_17_01_11_57

