MY
 COMPUTER LIKES
 ME*

by BOB ALBRECHT

*when i speak in BASIC

CONTENTS

TTY 1
BEGIN 2
STRINGS? NUMERICAL EXPRESSIONS 5
MISTRAKES 7
SHORTHAND 9
TOO MANY PEOPLE 12
BOXES 13
DIVISION OF LABOR 15
FOLLOW THE SIGNS 19
READ \& DATA 20
DEMOGRAPHY 23
BEWARE MATHEMATICAL MODELS 26
SORCERER'S APPRENTICE 27
THE SORCERER RETURNS 29
WORLD OF IF 31
ПJT 34
RACE TO OBLIVION 35
YOUR TURN 38
COUNT TO N 43
DO I ALWAYS HAVE TO STEP BY l? 46
THE HANDY-DANDY SUPER-VERSATILE FOR-NEXT LOOP 47
SUBSCRIPTED VARIABLES 49
BUILDING BLOCKS 53
INFORMATION RETRIEVAL 55
DOUBLE SUBSCRIPTS 57
THINGS TO DO 60
JANUS 61
BOOKS WE LIKE 62

TTY

This book is about people, computers and a programming language called BASIC. We will communicate with a computer, in the BASIC language, about population problems.

We will use a teletypewriter.

Teletypewriters are the Volkswagens of computer terminals . . . rugged, dependable, inexpensive, ugly and noisy!

We assume:
you know how to operate a teletypewriter, or
someone will show you how to use a teletypewriter, or
you can figure out how to use a teletypewriter (it's easy).
REMEMBER THIS: Many people use "TTY" as an abbreviation for "teletypewriter." We will too.

We can't answer all your questions in this book, but you, the TTY and the computer can answer most of them.

EXPERIMENTI GAMBLE! GUESS, ...
THEN TRY IT!

程egin

We use the TTY (teletypewriter... remember?) to send messages to the computer. In turn, the computer sends messages to the TTY for us to read.

Begin! Type your name on the TTY and press the RETURN key. The computer will probably type

WHAT?

or perhaps

? ? ?

or maybe

SYNTAX ERRGR
 (Look up SYNTAX in your dictionary.)

So try this . . . you press the keys . . you do the typing and remember, finish each line by pressing the RETURN key.

You type

SCR
10 PRINT "MY HUMAN UNUEKSTANDS ME" Ce Don't forget the
20 END
then type

RUN
and the computer will type

MY hUMAN UNDERSTANDS ME

Let's review what happened. First, you typed

SCR

and pressed the RETURN key. This told the computer to SCRatch any old information in its memory. It's sort of like erasing the blackboard before you start writing on it.

Next, yau typed a short program, consisting of two statements.

```
10 PRINT "MY HUMAN UNDERSTANDS ME**
2O END
```

As you typed the program, it was stored into the computer's memory. After entering the program, you then typed

```
RUN
MY HUMAN UNDERSTANDS ME
```

Then it stopped.

A statement begins with a line number. A line number is a whole number between 1 and 9999 , inclusive.

When you type RUN and press RETURN, the computer obeys each statement in the program, in line number order.

Still your turn. Try this one ... type

SCR	SCRatch the preceding program.
$\mathbf{1 0 ~ P R I N T ~ " 7 + 5 " ~}$	Enter the new program.
20 END	
RUN	RUN the new program.
$\mathbf{7 + 5}$	The computer types what you tell it to type.

Next ... let's replace Line 10 with a new Line 10. (Retype the line, including the line number.)

10 PRINT $7+5<$ No quotation marks.

Then tell the computer to LIST the current program.

LIST

10 PRINT $7+5 \rightarrow$ Here is the new Line 10,
20 END
RUN the old Line 20.
12 \quad RUN it.

The statement

```
PRINT 7 +5 without PC ?
```

tells the computer to evaluate the numerical expression $7+5$ (that is, do the arithmetic) and print the result as a decimal numeral.

The statement

```
PRINT **7 * 5**
wim ee 99
```

tells the computer to print the string enclosed in quotation marks exactly as it appears. No arithmetic is performed.

Strings? Numerical expressions?

TO TELLL THE COMPUTER TO ADD, USE + TO TELL THE COMPUTER TO SUBTRACT, USE TO TELL THE COMPUTER TO MULTIPLY, USE * TO TELL THE COMPUTER TO DIVIDE, USE /

To tell the computer to squeeze the answers more closely together, use semicolons instead of commas.

```
10 PRINT 7+5 ; 7-5 ; 7*5 ; 7/5
2O END
RUN
```

$12 \quad 2 \quad 35 \quad 1.4$

Mixed operations? Try this one.

> ()
$12 \quad 2 \quad 35 \quad 1.4$


```
10 PRINT 2*3*4, 2*3*4*5, 2*3/4
2O END
RUN
```

1026

Use parentheses to group terms.

$$
1.5
$$


```
10 PRINT 2*(3+4), (2+3)*(4+5), (2+3)/(4+5)
2O END
RUN
```

 14 . 45 . 55556

mistrakes

Do you occasionally make mistakes? We do, watch.

10 PTINT $2 \neq 3+4$ We misspell PRINT.
SYNTAX ERR@R The computer tells us we made a mistake.

The error message may be different on your computer. That's not the point. The point is, if we had noticed that we hit T when we meant to hit R, we could have corrected our mistake by using the back arrow.

EEWARE! THIS METHOD FOR CORRECTING MISTAKES MAY NOT WORK ON YOUR COMPUTER. IF IT DOESN'T ASK SOMEONE HOW TO MAKE CORRECTIONS.

The back arrow + is on the same key as the letter 0 . To type a back arrow, hold the SHIFT key down and press

LIST
10 PRINT *NY HUMAN UNDERSTANDS, ME"
99 END

A program is a set of statements. Each statement tells the computer to do some specific thing. So far, we have used only two types of statements, PRINT and END.

A statement begins with a line number. The computer obeys statements in line number order.

We space line numbers $(10,20,30$, etc.) so that we have room to insert new lines between existing line numbers. For example, we can insert up to nine new lines between Line 10 and Line 20.

You may choose line numbers arbitrarily and capriciously except for two things. A line number must be a positive integer between 1 and 9999 , inclusive and the END statement must have the highest line number of any line in the program.

Type SCR to tell the computer to scratch (erase) the program in its memory. This is sort of like erasing a blackboard before you begin writing on it.

Type RUN to tell the computer to obey the program in its memory.

Type LIST to tell the computer to type the program in its memory on the TTY so you can read it.

When you type something, terminate each line by pressing the RETURN key. Nothing interesting will happen until you do.

To delete the last character typed, type a back arrow $(*)$. To delete the last two characters, type two back arrows, to delete the last three characters, type three back arrows, and so on. (Remember, a space is a character too.)

And always remember . . .

SHORTHAND

The population of the U.S. is about 205 million people.

$$
205 \text { MILLION }=205000000
$$

We asked ourt computer to print the population of the U.S.

```
10 PRINT "POPULATIEN OF THE U.S. IS";205000000
99 END
RUN
```

PGPULATIGN OF THE U.S. IS 2.050000E+08

But we thought it was 205000000??!!

Our computer prir, - d the population in scientific notation. (It really isn't especially scientific . . . it's just called scientific . . . some people call it floating point.)

Scientific notation is simply a shorthand way of expressing very large or very small numbers. In scientific notation a number is represented by a mantissa and an exponent.

The mantissa and the exponent are separated by the letter " E " . . . read on!

\dagger Your computer may do it somewhat differently.

Here are some examples showing numbers written in good old everyday ordinary notation and again in scientific notation (well, scientific notation according to our computer).
one trillion

$$
\text { ordinary notation: } \quad \mathbf{1 0 0 0} 000000000
$$

scientific notation: $\quad 1.000000 \mathrm{E}+12$
volume of the Earth, in bushels
For these two very large
numbers, the exponents
are positive
are positive.
ordinary notation: $\quad \mathbf{3 1 7 0 8} \mathbf{0 0 0} \mathbf{0 0 0}$ scientific notation: $\quad \mathbf{3 . 1 7 0 8 0 0 E}+22$
speed of a snail in miles per second

ordinary notation:	.0000079	
scientific notation:	$7.900000 \mathrm{E}-06$	For these two very small
		numbers, the exponents are negative.

ordinary notation: $\quad .00000000000000000000167$
scientific notation: $\quad \mathbf{1 . 6 7 0 0 0 0} \mathbf{E}-21$

Have you noticed? Our computer always prints the mantissa with 7 digits, one digit to the left of the point, 6 digits to the right.

$3.170800 \mathrm{E}+22$
 4
 7 digits

Also notice that the exponent is positive for large numbers and negative for small numbers.
3.170800E+22
exponent is positive $(+22)$
1.670000E-21 < exponent is negative (-21)

Numbers printed in scientific notation can be converted to ordinary notation like this.

CASE 1. Exponent is positive.

(1) Write down the mantissa separately.
(2) Move the decimal point to the right the number of places specified by the exponent. If necessary, add zeros.

Example.

Computer prints	$2.050000 \mathrm{E}+08$
Write mantissa separately	2.050000
Move decimal point 8 places right	205000000
	8 places (we had to add 2 zeros)

Ordinary notation: 205000000 .

Again. Computer prints $3.170800 E+22$
Write mantissa separately 3.170800
Move decimal point 22 places right 31708000000000000000000 .
22 places (we had to add zeros)
Ordinary notation: 31708000000000000000000 .

CASE 2. Exponent is negative.
(1) Write down mantissa separately.
(2) Move decimal point to the left the number of places specified by the exponent. If necessary, add zeros.

Example.

Computer prints
Write mantissa separately
Move decimal point 6 places left
7.900000E-06
7.900000
. 000007900000
6 places (we had to add 5 zeros)

Ordinary notation: .0000079

TOO MANY PEOPLE

At the end of 1970 , the population of the earth was about 3.6 BILLION people.

If the present growth rate persists, the population will double every 35 years.
Suppose this actually happens . . . what will the population be in the year 2250?

$$
\frac{2250-1970}{35}=\frac{280}{35}=8 \text { doublings }
$$

We could do it like this.

```
10 PRINT 3.6E9*2*2*2*2*2*2*2*2 (8 doublings ... count them!)
99 END
RUN
```

 9.216000 +11 \(\leftarrow\) too many
 How many people?

```
9.216E+11 = 921600000000 = 921.6 BILLION
```

A shorter way.
Do you remember? $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{\delta}$
In BASIC, we write 2^{8} like this: $2 \uparrow 8$

```
10 PRINT 3.6E9*2.8
Multiply 3.6E9 by 28
99 END
RUN
```

Remember ... to compute a power use

BOXES

Deep down inside the computer there are 26 little boxes.

Each box can contain one number at any one time. We have already stored numbers in some of the boxes.

What number is in box F ? \qquad In J ? \qquad
-6 is in box \qquad and 2.5 is in box \qquad
O.K., using a pencil, put 8 into C. In other words, write the numeral " 8 " in the box labelled "C." Then do the following, carefully!

$$
\begin{aligned}
\text { FIRST - } & \text { Put } 12 \text { into N. } \\
\text { SECOND - } & \text { Put } 27 \text { into N. But wait! A box can hold only } \\
& \text { one number at a time .. before you can enter } \\
& 27 \text { into N, you must first erase the } 12 \text { that you } \\
& \text { had previously entered. }
\end{aligned}
$$

When the computer puts a number into a box, it automatically erases the previous content of the box.

Tell it to the computer.

```
10 LET A = 7 PUT 7 INTO BOX A.
2O PRINT A PRINT THE CONTENT OF bOX A.
99 END
RUN
```

7

Another example.

10 LET A $=7$
20 LET $B=5$
30 PRINT $A+B, A-B, A * B, A / B$
99 END
RUN
12
2
35
1.4
More practice? O.K.
10 LET A $=2$
20 LET E $=3$
30 LET C $=4$
40 LET D $=5$
50 PRINT $A+B+C+D, A * B * C * D, A *(B+C),(A+B) /(C+D)$
99 END
RUN
14
120
14
.555556

We call $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots, Z$ variables. The number in box A is the value of A, the number in box B is the value of B, the number in C is the value of C, and so on. Without using the computer, complete each of the following RUNS as you think the computer would do it. Then use the computer to find out if you are correct.

10 LET A $=1$	10 LET A 7	10 LET $A=1$
20 LET A 2	20 LET B = A	20 PRINT A
30 PKINT A	30 PKINT E	30 LET A $=2$
99 END	99 END	40 PKINT A
RUN	RUN	$\begin{aligned} & 99 \text { END } \\ & \text { KUN } \end{aligned}$

DIVISION OF LABOR

You and the computer have worked diligently. But you have done too much of the work, the computer too little.

A PROBLEM. In year zero, we start with a population of P people. The
 population increases by 1% each year. In N years, the population will be:

If the growth rate is $\mathbf{2 \%}$ per year, then

$$
Q=P(1+2 / 100)^{N}
$$

If the growth rate is $\mathbf{2 . 5 \%}$ per year, then

$$
Q=P(1+2.5 / 100)^{N}
$$

And, if the growth rate is $R \%$ per year; then

$$
Q=P(1+R / 100)^{N}
$$

Remember ...

P is the initial population.

R is the growth rate in per cent per year.
N is the number of years.
Q is the population in N years.

Let's write a BASIC program to compute and print the value of Q for given values of P, R and N.

You do it! First, type SCR and press the RETURN key. Then enter the program. Enter each statement as shown (and press the RETURN key after each statement, of course).

Now type RUN and press RETURN. The computer types a question mark.

3

It wants something. It wants what the program tells it to want ... INPUT P ... do it. Enter 1000 as the initial population and press RETURN.

$? 1000$

$?$

Another question mark. Now what does it want? Of course, the value of R. Do it, enter 1 (for $\mathbf{1 \%}$) and press RETURN.
? 1000
$? 1$
$?$

Still another question mark. That's right. The computer wants the value of N. Let's try 20.

```
? }100
31
\(? 20\)
```

1220.19

It computes and prints the value of \mathbf{Q} and stops. The program is still in the computers memory. RUN it again. Use 1000 as the initial population, increase it 2% each year for 35 years.

> RUN
> $? 1000$
> $? 2$
> $? 35$

To RUN the program

Type RUN and press the RETURN key.
The computer types a question mark. Type the value of \mathbf{P} and press the RETURN key.

The computer types a question mark. Type the value of \mathbf{R} and press the RETURN key.

The computer types a question mark. Type in the value of \mathbf{N} and press the RETURN key.

DO IT!

RUN

$\mathbf{3} \mathbf{3 . 6 E 9}$	$P=3.6$ billion people (Earth, 1970)
? 2	$R=2 \%$
? 31	$N=31$ years
$\mathbf{6 . 6 5 1 3 1 9 \mathrm { E } + 0 9}$	$Q=6.7$ billion people (Earth, 2001)

Your turn. Complete the following.

RUN

```
? 205E6
P=205 million people (USA, 1970)
? 1.1
? }10
\(R=1.1 \%\)
\(N=100\) years
```

RUN the program again. You pick the values of \mathbf{P}, \mathbf{R} and \mathbf{N}.

RUN

\qquad Your value of P.
?
Your value of R.
$?$
Your value of N.

Now that we have solved the problem one way, let's do it again using a slightly different approach.

Compute Q for given values of P, R and N.

$$
Q=P\left(1+R(100)^{N}\right.
$$

As usual, we want you to do it. Type as directed below.

SCR

First, SCRatch the old program.

RUN

1 1000. 1. 20 1820.19

RUN

7 3.659. 2. 31 $6.651319 E 409$

In the above program there is only one INPUT statement, but it asks for input of three numbers, one number for each variable in the INPUT statement.

Is the program on Page 18 still in the computer? If not, enter it.

Now we assume that the program on Page 18 is in the computer. Do not type SCR. Instead, type

40 G TO 10

You have added a statement to the program in the computer. It tells the computer to GO TO Line 10. Let's look at the program as it now resides in the computer's memory.

type

LIST

and press RETURN. The computer types the complete program.
10 INPUT P, R, N
20 LET $0=P *(1+R / 100)$ IN
30 PRINT 0
40 GO T0 10 Here is the statement you added, right where it should be, between 99 END Line 30 and Line 99.

RUN

```
3 1000, 1.20
    1220:19
? 1000, 2, 35
    1999.890
T 3.6E9, 2. 100
    2.608073E+10
```


Enter values.
Computer prints answer and goes around.
Enter values.
Computer prints answer and goes around.
Enter values.
Computer prints answer and goes around.
YOUR TURN. Enter values.
Computer prints answer and goes around.

7 But how do we get out of this??

Let's start with the program on Page 19 and make a couple of changes. Change INPUT to READ . Change the PRINT statement. Add three DATA statements. Each DATA statement contains one set of data \ldots values of P, R, N.
10 READ P, R, N
30 PRINT P, R, N. 0
90 DATA 1000, 1, 20
91 DATA 1000,2,35
92 DATA 3.6E9, 2, 100

LIST

```
10 READ P. R. N Were is a change.
20 LET Q = P*(t+R/100) &N
30 PRINT P, R, N, Q Here is a change.
40 G0 TO 10
90 DATA 1000, 1. 20
91 DATA 1000,2,35
92 DATA 3.6E9. 2, 100
99 END
```

RUN

1000	1	20	1220.19
1000	2	35	1999.890
$3.600000 E+9$	2	100	$2.6080725+10$

OUT OF DATA IN LINE $10<$ This means what it says. The computer has used all the data in the DATA statement.

BEWARE!

\qquad the message may be different on your computer.

Now it's your turn. Add the following statement,

and RUN the program. The results should look like this:

P	R	N	Q
1000	1	20	1220.19
1000	2	35	1999.889
$3.600000 E+09$	2	100	$8.608072 E+10$

gUt of data in line 10

We used three DATA statements, each with one set of values for P, R and N. But we could have put all the data in one DATA statement. Try it.

type

```
90 DATA 1000. 1. 20. 1000, 2. 35. 3.8%9, 2. 100
```

Wait! Since you have put all the data in Line 90, you no longer need Lines 91 and 92. Let's delete them.

```
91 IF YOU TYPE A LINE NUMBER AND PRESS
92 RETURN, THE COMPUTER ERASES THAT LINE,
    but gnly that linE, from itS memory.
```


list \& run

```
LIST
S PRINT " Po," R"n." No," O"
10 READ PSRON
80 LET QaP*(1+R/100) fN
30 PRINT P&R&N&O
40 68 T0 10
90 DATA 1000:1,20,1000,2,35,3.600000E+09,2,100
99 END
RUN
\begin{tabular}{llll}
\(P\) & \(R\) & \(N\) & 0 \\
1000 & 1 & 20 & 1280.19 \\
1000 & 2 & 35 & 1999.889 \\
\(3.600000 E+09\) & 2 & 100 & \(2.608078 E+10\)
\end{tabular}
```

```
OUT OF DATA IN LINE 10
```


READ tells the computer to read numbers from a DATA statement, one number for each variable in the READ statement. Use as many DATA statements as you wish to hold the data. When the computer uses all the data in a DATA statement, it automatically moves to the next DATA statement. If it can't find any more data, it types a message such as OUT OF DATA.

Next a program to print a table showing the value of Q versus the value of N for fixed values of P and R.

```
100 READ P,R
110 PRINT "INITIAL POPULATION IS" 3P;"PE@PLE**
120 PRINT "GROWTH RATE IS*;'R3"g"
130 PRINT
200 PRINT " N","POPULATION"
210 PRINT
300 READ N
310 LET Q=P*(1+R/100) &N
320 PRINT N,O
330 G0 TO 300
```



```
900 DATA 100000:2
910 DATA 10,20,30,31,35,70,100
999 END
```

RUN
INITIAL PGPULATIEN IS 100000 PEOPLE \angle These results are brought to you GROWTH RATE IS 22 by Lines 110 and 120.

10	121899.4	
20	148594.7	
30	181136.1	
31	184758.9	
35	199988.9	
70	399955.7	
100	724464.4	

```
OUT OF DATA AT LINE }30
```


CHECK OUT THE PROGRAM:

\checkmark The values of P and R are in Line 900 . There is one value of P and one value of R.
\checkmark The values of N are in Line 910. There are seven values of N .

Your turn. Change the data. Use data for Earth, 1970, and values of N as follows:

```
P=3.6E9
R=2
N=10,20,30,31,35,70,100,200,300
```


DEMOGRAPHY

Demography?

de-mog-ra-phy [Gr. demos, the people +.GRAPHY] the statistical science dealing with the distribution, density, vital statistics, etc. of populations.

A good source of demographic data:

Me My address		
	POPULATION REFERENCE BUREAU, INC. 1755 Massachusetts Ave., N.W. Washington, D.C. 20036	

Their 1970 WORLD POPULATION DATA SHEET gives data on 142 countries summarized by geographical regions. We have copied a small amount of data from the data sheet.

Get acquainted with the data. You will see a lot of it from now on!
O.K., we now have a data base (set of data) consisting of 1970 population and growth rate for eight regions, 16 numbers in all.

First, a simple program to read the data and print the table. Our program includes REMARK statements which (we hope) make the program easier for people to read and understand. The computer ignores REMARK statements.

```
100 REMARK***PRINT THE HEADING
110 PRINT "1970 WERLD POPULATION DATA"
120 PRINT
130 PRINT "POPULATION*","GROWTH RATE*
140 PRINT
200 REMARK***READ AND PRINT NUMERICAL DATA
210 READ P, R
2RO PRINT P: R
230 G6 T0 210
900 REMARK***DATA BASE
910 DATA 344. 2.6
#20 DATA 2056, 2.3
930 DATA 228, 1.1
9A0 DATA 283. 2.9
9 5 0 ~ D A T A ~ 4 6 2 , . 8 ~
960 DATA 2A3, 1.0
9 7 0 ~ D A T A ~ 1 9 . ~ 2 . 0 ~ 0
980 DATA 3635. 2.0
999 END
```

RUN
1970 WERLD PGPULATIEN DATA
POPULATION GROWTH RATE
344
20562.3
228 1.1
283
2.9
462
243
-

In order to save space, let's put more data in each DATA statement and use fewer DATA statements. You do it. Make the following changes:

910 DATA 344,2.6,2056,2.3
920 DATA $228,1.1,283,2.9,462.08$ PUT ALL THE DATA
930 DATA 243. $1.0 .19,2.0,3632,2.0$

If the program is still in the computer, enter the changes noted above:
\checkmark REPLACE the old Lines $910,920,930$ with the ones above.
\checkmark DELETE Lines 940 to 980 . (If you've forgotten how, see page 21.)
\checkmark RUN the new program.
The results should be the same as the results produced by the original program.

Your Turn

Modify the program so that, for each region, the computer computes and prints a third column: the population in the year 2001. In other words, a run of your program might look like the following: (Don't change the data base!)

RUN		
1970 WERLD PGPULATIEN DATA		
POPULATIEN	GREWTH RATE	POP. IN 2001
344	2.6	762.3011
2056	2.3	4160.711
228	1.1	320.058
283	2.9	686.5356
462	. 8	591.4503
243	1	330.8025
19	2	35.10418
3635	2	6710.442 World Population in 2001.

KEEP EXPERIMENTING! Change the program again so that the third column gives the population for the year 1984. Or for the year 2500 . Or . .

[^0]

We made an assumption and developed a mathematical model of population growth.
ASSUMPTION: The increase in population each year is a percentage of the population at the beginning of the year. The percent increase, which we call R, does not change from year to year.

MATH MODEL: If the initial population is \mathbf{P} and the (constant) rate of increase is $\mathbf{R} \%$ per year, then the population \mathbf{Q} in \mathbf{N} years is

$$
Q=P(1+R / 100)^{N}
$$

QUESTIONS

Does our model really resemble real life?
Can we use it to predict the future population of the U.S.? Of the Earth?
How far into the future can we expect our model to provide reasonably accurate predictions? 10 years? 100 years? 1000 years?

The above questions lead to more questions.

Is the rate of increase (R) really constant or is it increasing or decreasing?
Is the rate the same for different regions of the Earth (e.g., North America, Asia, and so on)?

Can we look more deeply into the mechanisms of population growth (birth rate, death rate, migration, life expectancy, fertility, and so on)?

Where can we get more information?

The last question we can answer. \square

Population Reference Bureau, Inc.
1755 Massachusetts Avenue N.W.
Washington, D.C. 20036

SORCERER'S APPRENTICE

Do tou know the story about the Sorcerer's Apprentice? While the Sorcerer was gone, the apprentice instructed the magic broom to fetch water from the well. The broom complied and began carrying water, more water, more water . . . the apprentice had firgotten how to tell the broom to stop.

The following program makes the computer behave like the Sorcerer's broom. Once you set it in motion, it will start printing, printing, printing, . . you. the apprentice. must know how to stop it!

Before typing the program, find the BREAK key. It is on the righthand side of the kewboard.

Vow, enter the program.

```
10 LET N * 1
20 PRINT N
30 LET N = N+1
40 GO TO 20
99 END
```

BEFORE TYPING RUN, READ THIS:
To STOP the computer, Press BREAK for 1 second. If that doesn't work, press the S key.

If that doesn't work, try ESC or ALT MODE

If that doesn't work, yell for help!

RUN

1
2
3
4
5
6
7
8
$!$
and so on forever unless you stop the computer!

Let's follow along as the computer RUNs the program on the preceding page. Follow the arrows.

99 END

Another view. Below is a TRACE of the program. (Trace? Sure! A TRACE traces the path the computer takes through the program it is working on, and shows what values are assigned to the variables at any step in the program. Ain't it obvious?) In the column marked N we show the value of N after the statement on the same line has been carried out by the computer.

THE SORCERER RETURNS!

Here is our Sorcerer's Apprentice program again . . . but we have made one small change.

1
2
3

The computer counts to 3 , types READY and stops.

KEADY.

YOUR COMPUTER MAY TYPE DQNE OR SOME OTHER MESSAGE, OR PERHAPS, IT WILL JUST SIMPLY STOP.

```
This statement IF N<=3 THEN 20
tells the computer: IF THE VALUE OF N IS LESS THAN
OR EQUAL TO 3 THEN GO TO LINE 2O.
```

If the value of N is NOT less than or equal to 3, the computer goes on to Line 99 (the next line in regular line number sequence). And, since Line 99 is an END statement, the computer stops.
IF...THEN...

Follow the arrows. Read the road signs.

This is a condition.

Keep following.

There is always another way. Here are two more programs to "count to 3." RUN them.

```
10 LET N
20 PRINT N
30 IF N = 3 THEN 99
40 LET N N N + 1
50 GO T6 20
99 END
```

```
10 LET N : 1
20 IF \(N=3\) THEN 99
30 PRINT N
40 LET N N N 1
50 GO T 20
99 END
```


world of IF

Another look at the IF statement.

GENERALFORM: IF condition THEN line numbe

EXAMPLE:
IF $K>3$
THEN
99

The condition $K>3$ is true for some values of K, false for other values.

Suppose $K=4$.	Then $K>3$ is TRUE. The computer will go to Line 99.
Suppose $K=1$.	Then $K>3$ is FALSE. The computer will go to the line number that is next higher than the line number of the IF statement.

What happens for $K=2$? $K=3$? \qquad

The condition in an IF statement is usually a math relation between two BASIC expressions. The permissible relations are shown in the table below.

RELATION	MATH SYMBOL	BASIC SYMBOL
equal to	$=$	$=$
less than	$<$	$<$
greater than	$>$	$>$
less than or equal to	\leq	$<=$
greater than or equal to	\geq	$>=$
not equal to	\neq	$<>$

Do you understand all you know about the IF statement? Find out . . . predict the results printed by the computer under control of each of the following programs. Then RUN them to find out if you are correct.

```
10 LET N:O
20 PRINT N
30 LET N N N + 10
40 IF NGEIOO THEN 20
99 END
```

```
10 LET C - 10
8O PRINT C
30 IF C=0 THEN 99
40 LET C # C-1
50 60 T% 20
99 END
```

Let's put IF to work. The following program directs the computer to generate and print a table of

$$
Q=P(1+R / 100)^{N}
$$

for equally spaced values of $N(N=0,10,20, \ldots, 100)$.

10 PRINT "INITIAL POPULATIEN"; Don't forget the semicolon. Why?
15 INPUT P See Page 33.

20 PRINT "GROWTH RATE";
25 INPUT R
30 PRINT
40 PRINT " N","POPULATION" 4 Print the heading.
45 PRINT

RUN
INITIAL POPULATIONT205 GROWTH RATE?

N POPULATION

0	205
10	226.4475
20	250.1389
30	276.309
40	305.217
50	337.1494
60	372.4226
70	411.3862
80	454.4263
90	501.9693
100	554.4863

RUN it for USA, 1970.
Given in millions of peoplp. 1% growth rate.

Since the initial population was given in millions of people, the results are also in millions of people. For $\mathbf{N}=\mathbf{5 0}$, the population is
337.1494 million people.

READY.

10 PRINT "INITIAL PQPULATIEN"; 15 INPUT P

Tell the computer to type: INITIAL PQPULATION?

Line 10 tells the computer to type INITIAL POPULATION. The semicolon at the end of Line 10 says "don't RETURN the carriage to the left margin." Line 15 tells the computer to type a question mark and wait.

What would happen if we omitted the semicolon at the end of Line 10? Try it . . . find out for yourself.

What would happen if we use a comma instead of a semicolon? Try it . . . find out.

Let's make a small change in the program.

10 PRINT NOINT(O+.5)

What is INT? Accept it for now. RUN the modified program. The RUN should look like this:

RUN

INITIAL PEFULATION22OS
GROWTH RATE?I

N	POPULAT IGN	Compare the POPULATION results with the
0	205	results on Page 32.
10	226	
20	250	These results are all rounded to the nearest
30	276	
40	305	
50	337	
60	411	
70	509	

INT

The INT function has the general form

INT(e)

where e is any BASIC expression. The INT function tells the computer to evaluate the expression and then compute the greatest integer that is less than or equal to the value of the expression.

Examples.

$\operatorname{INT}(2)=2$	$\operatorname{INT}(0)=0$	$\operatorname{INT}(-3)=-3$
$\operatorname{INT}(3.99)=3$	$\operatorname{INT}(.01)=0$	$\operatorname{INT}(.999)=0$
$\operatorname{INT}(-.01)=-1$.	$\operatorname{INT}(-3.14)=-4$	$\operatorname{INT}(25 / 2)=12$

More examples? Gather your own. RUN the following program.

X X $\begin{aligned} & \text { Be creative ... choose } \\ & \text { both plain and fancy x's. }\end{aligned}$ X

```
10 PRINT "X=00%
20 INPUT X
3 0 ~ P R I N T
40 PRINT"INT(X)="*INT(X),"INT(X+.S)=";INT(X+.S)
5 0 ~ P R I N T
60 G0 T0 10
99 END
```


(1) $\operatorname{INT}(6.7)=$ \qquad (2) $\mathrm{INT}(6.7+.5)=$ \qquad
(3) $\operatorname{iNT}(6.3)=$ \qquad (4) $\operatorname{INT}(6.3+.5)=$ \qquad
(5) $\operatorname{INT}(6.5)=$ \qquad (6) $\operatorname{INT}(6.5+.5)=$ \qquad
(7) $\operatorname{NT}(-3.9)=$ \qquad (8) $\operatorname{iNT}(-3.9+.5)=$ \qquad
(9) $\operatorname{INT}(-3.4)=$ \qquad (10) $\operatorname{INT}(-3.4+.5)=$ \qquad

RACE TO OBLIVION

Here is our World Population table again. Population is given in millions of people.

REGION	POPULATION	RATE OF INCREASE
AFRICA	344	2.6%
ASIA	2056	2.3
NORTHERN AMERICA	228	1.1
LATIN AMERICA	283	2.9
EUROPE	462	0.8
U.S.S.R.	243	1.0
OCEANIA	19	2.0
WORLD	3635	2.0

The fastest growing region is Latin America and the slowest growing region is Europe. In 1970, the population of Europe was considerably more than the population of Latin America.

ASSUME: The growth rates for Europe and Latin America will remain constant.

QUESTION: In what year will the population of Latin America become greater than the population of Europe?

Try this program.

```
10 LET N=1
20 LET E=462*(14.8/100) IN E for Europe
30 LET La283*(1+2.9/100)8N
    L for Latin America
40 IF L\E THEN }1
SO LET NaN+1
60 Ge Te 20
70 PRINT "THE YEAR 1S";1970+N
99 END
RUN
THE YEAR IS 1994
READY.
```

If the assumption is correct, the population of Latin America becomes greater than the population of Europe in 1994.

A more general program. We enter the 1970 population and growth rate for each population. The computer computes and prints the year in which the second population overtakes the first population.

```
100 PRINT "FIRST PGPULATION"S
1:10 1NPUT PI
120 PRINT "GRONTM RATE**
130 INPUT RI
140 PRINT
150 PRINT *SECOND PGPULATION**
160 INPUT PQ
170 PRLNT *GROWTH RATE*'S
180 1NPUT K2
190 PRINT
200 LET NEI
210 LET 01=PI*(t+RI/100) N N
220 LET 02=P2*(1+R2/100)*N
230 IF 0R>01 THEN 300
240 LET N=N+1
250 63 T苗 210
300 PRINT *THE YEAR IS*S19704N
310 PRINT
30%GOTG 100
9%9 END
RUN
FIRST POPULATIONZ462
GROWTH RATE?.8
```



```
SECBND POPULATIONT283
GRONTH RATE?2.9 Latin America
THE YEAR IS 1994
FIRST POPULATION?
Your turn. But wait! Read on.
```

ASSUMPTIONS. We assume that the first population is greater than the second population in 1970 but that the second population is growing more rapidly. Mathematically, we say that

$$
P 1>P 2 \text { and } R 2>R 1
$$

Try some data that violates one or both assumptions.

Beware! You may have to stop the computer
if you enter data for which the second
population can't catch the first population.

We want to sneak in a new idea . . . checking for valid data. First, answer a few questions.

1 Will Northern America ever catch up with Latin America?
2 What happens if we enter Oceania as the first population and Asia as the second population?

Will Africa ever catch up with Latin America?
Remember, our assumptions are $\mathrm{P} 1>\mathrm{P} 2$ and $\mathrm{R} 2>\mathrm{R} 1$. Let's add some statements to the program to check the incoming data and reject data that violates one of the assumptions. The data violate the assumptions if

$$
P 1<=P 2 \text { or } R 2<=R 1
$$

Add the following statements.

```
181 IF P1<mP2 THEN 184
182 IF R2<xR1 THEN 184
183 G0 T0 190
184 PRINT "BAD DATA. TRY AGAIN."
185 PRINT
186 G0 T0 100
```

LIST the modified program. RUN it. Use several sets of data. After all, there are 56 different ways to select a FIRST POPULATION and a different SECOND POPULATION from the eight regions (including the World total) shown in the table.

One more thing. Will the population of Latin America ever become greater than the population of the entire World? Try it on the computer. Use data for World as FIRST POPULATION and data for Latin America as SECOND POPULATION.

beware mathematical models

Your Turn

Modify the program of Pages 36 and 37 so that results are printed as indicated below.

RUN

FIRST POPULATIEN?462 GROWTH RATE?. 8

SECOND POPULATIGNz283 GROWTH RATEPR.9

THE YEAR 151994
FIRST POPULATION IS NOW 559
SECOND POPULATION IS NOW 562
FIRST POPULATION? and so on.

Modify the program so that the values of $P 1, R I, P 2$, and $R 2$ are entered by means of READ and DATA statements. In fact, use the following DATA statements. (Add line numbers.)

```
DATA 462. .8. 283. 2.9
DATA 462, .8, 344, 2.6
DATA 462, -8, 843, 1
DATA 344, 2.6, 283, 2.9
DATA 283, 2.9. 228. 1.1
DATA 228, 1.1. 283. 2.9 BADDATA
DATA 283, 2.9, 462, .8
```


For valid data, numerical results should be printed under the following headings. We show results corresponding to the data in the first (top) DATA statement above.

Does this program look familiar? (It should . . .)

```
10 LET N = I
2O PRINT N
30 LET N = N + 1
40 IF N&F3 TMEN 20
99 END
```

RUN

You first saw this program
on Page 29. It tells the computer to count to 3 , and then stop.

1

8
3
READY

AND ANOTHER WAY TO COUNT TO 3

10 FOR NEI TO 3
20 PRINT N
30 NEXT N
99 END

RUN

1 Count to 3.
3 Then stop.

READY.

* begins with a FOR statement
* ends with a NEXT statement
* usually includes one or more
statements between the FOR and NEXT statements

How does the FOR-NEXT loop work? Follow the

As you can see, each time the computer comes to the NEXT \mathbf{N} statement, it increases the value of \mathbf{N} by one, and checks the new value against the limit for \mathbf{N}. In this case, the limit is 3 , because the FOR statement reads: FOR $\mathrm{N}=1$ TO 3. When the value of N is greater than 3 , the computer continues on to the next statement after the NEXT statement. (Got that?)

more examples

```
10 FOR N = O T0 3
20 PRINT N
30 NEXT N
99 END
RUN
10 FOR N = 2 T0 7
20 PRINTN
30 NEXT N
99 END
RUN
```

0 2
1 3
2 4
3 5
READY 7

Got the idea? Then try these. Without using the computer, complete each of the following by filling in the blanks.
10 FOR N $=10$ T0 13
20 PRINT N
30 NEXT N
99 END
RUN
\qquad
10 FOR $N=-1 T 01$
20 PRINT N
30 NEXT N
99 END
RUN
\qquad
\qquad
\qquad
keady

READY

Have you noticed that both programs are the same except for Line 10? Now check your work above by running the programs on the computer. Do it now.

Gnd then

Then, experiment! Check out each of the following FOR statements. Remember, you need only change Line 10.

```
10 FOR N = 5 T0 S
10 FOR N = 1.5 T0 6.5
10 FER N = 1.25 T0 5.25
10 FER N = 1.25 T0 5
10 FOR N = 1 T0 5.25
10 FOR N = 1 T0 2*3
10 FER N = 2*3 T0 4*5
IO FOR N = 1/2 T0 17/2
```


Next . . . a program to print the data from the 1970 WORLD POPULATION SHEET.

```
100 REMARK***PRINT THE HEADING
110 PRINT "1970 WORLD POPULATION DATA"
120 PRINT
130 PRINT "REGION NE."s"PEPULATION","GROWTH RATE"
140 PRINT
800 REMARK***READ AND PRINT NUMERICAL DATA
210 FOR K=1 T0 }
2O READ PsR
230 PRINT K.P&R
240 NEXT K
$00 REMARK***DATA BASE
910 DATA 344,2.6,2056,2.3
gR0 DATA 288.1.1,283,2.9
930 DATA 462..8.243.1
940 DATA 19,2,3635,2
9 9 9 ~ E N D
RUN
1970 WGRLD POPULATION DATA
REGION NG. PGPULATION GROWIM RATE
\begin{tabular}{lll}
1 & 344 & 2.6 \\
8 & 2056 & 2.3 \\
3 & 228 & 1.1 \\
4 & 283 & 2.9 \\
3 & 462 & 18 \\
6 & 243 & 2 \\
7 & 19 & 2635
\end{tabular}
RIADY.
```

We will refer to the above program again. Therefore, we suggest that you learn how to "dump" the program on paper tape so that when you want to enter it again, you can do so quickly, using the paper tape reader. (Saves a lot of typing and a lot of terminal time!!!)

The EASY way: Ask someone to show you how.
The HARD way: Dig it out of the reference manual or operating manual for BASIC on the computer system that you are using.

COUNT TO N

The following program directs the computer to count to N, where the value of N is supplied in response to an INPUT statement.

```
10 PRINT "N#"#
20 INPUT N
30 FOR K=1 TO N
40 PRINT K
50 NEXT K
6 0 ~ P R I N T ~
70 GO T0 10
99 END
```


Change Line 40 as follows and RUN the program again.

Now we want to use the program on Page 42 again. Did you dump it onto paper tape? (That is, did you punch a paper tape copy of the program after you typed it in the first time?) If so, read the program into the computer through the paper tape reader. Other wise, type it in again... s lowly, t ediously.by hand!

Now that you have entered the program, make the following changes:

```
205 KEAD N
210 F0R K = 1 T0 N
905 DATA }
```

Then L.IST the modified program

```
L.IST
100 REMARK***PRINT THE HEADING
110 PRINT "1970 WORLD POPULATION DATA"
120 PRINT
130 PRINT "REGION NO.":"PGPULATION","GROWTH RATE"
140 PRINT
200 REMARK***READ AND PEINT NUMERICAL DATA
205 READ N
210 FOR K=1 TO N
220 READ P,R
230 PRINT K,P,R
240 NEXT K
900 REMARK***DATA BASE
905 DATA 8
910 DATA 344,2.6,2056,2.3
920 DATA 228,1.1,283,2.9
930 DATA 462,.8,243,1
940 DATA 19,2,3635,2
999 END
```


Now RUN the modified program. The results should be exactly the same as the results in the RUN on Page 42.

You ask (and well you might): If the results are the sume, why did we bother'?

And here is your very own data base to play with.

COUNTRY	K	POPULATION \dagger	GROWTH RATE
Australia	1	12.5	1.9
BRAZIL	- 2	93.0	2.8
CHINA	3	759.6	1.8
COSTA RICA	4	1.8	3.8
GERMANY, EAST	5	16.2	0.3
GERMANY, WEST	6	58.6	0.6
INDIA	7	554.6	2.6
JAPAN	8	103.5	1.1
MALTA	9	0.3	-0.8
MEXICO	10	50.7	3.4
NIGERIA	11	55.1	2.6
PHILIPPINES	12	38.1	3.4
U.S.S.R.	13	243.6	1.0
U.A.R.	14	33.9	0.5
UNITED KINGDOM	15	56.0	2.8
U.S.A.	16	205.2	1.0

\dagger in millions of people, rounded to the nearest 10 th of a million

How would you modify the program on Page 42 to use the above data base? (Go ahead and try such a modification if you wish.)

How would you modify the program on Page 44 to use the above data base?
PLEASE DOIT - you need to change only Lines 905, 910, 920, 930 and 940. If necessary, add additional DATA statements.

RUN the program after you have modified it. The results should look like this:

RUN

1970 WBRLD RDPULATION DATA
REGION ND. POPULATION GREWTH RATE

1	12.5	1.9
2	93	2.8
3	759.6	1.8

DO I ALWAYS HAVE TO STEP BY 1?

"What?"
"I said, do I always have to step by 1 ?"
"I thought you'd never ask. My Cogent answer: No. Try these on your friendly computer."
10 FOR K=1 TO S STEP 2
20 PRINT K
30 NEXT K
99 END
RUN

READY.

10 FOK K=O TO 10 STEP 3
20 PRINT K
30 NEXT K

K is stepped by 3.
99 END
RUN
0
5
6
9

READY.

We can even step "backwards." RUN this one.

```
*****&***********************#**************
10 FOR K=10 TO O STEP - I
2O PRINT K
30 NEXT K
99 END
```


THE HANDY-DANDY SUPER-VERSATILE FOR-NEXT LOOP

There are two general forms of the FOR statement. Here is the first general form, and some examples.

In other words:

The second general form is:

FOR	(variable)	$=$	/expression/	TO	lexpression/	STEP	[expression/
FOR	K	$=$	1	TO	9	STEP	2
FOR	N	$=$	0	TO	100	STEP	10
FOR	X	$=$	A	TO	B	STEP	H
FOR	C	$=$	$\mathrm{N}+1$	TO	$2^{*} \mathrm{M}$	STEP	$\mathrm{K} / 2$

In other words:

Back on Page 30 (if you'll cast your mind back) there is a program to print a table of:

$$
Q=P(1+R / 100)^{N}
$$

Here is a more general program.

```
100 REMAFK***REGUEST DATA AND PFINT HEADING
|O PRINT "INITIAL PGPULATION":
115 INPUT P
120 PKINT "GKDWTH KATE";
125 INPUT K
130 PRINT "INITIAL VALUE OF N";
135 INPUT A
14O PRINT "FINAL VALUE OF N";
145 INPUT B
150 PRINT "STEP SIZE";
155 INPUT H
160 PRINT
170 PEINT " N","POPULATION"
180 PRINT
200 REMARK***CEMPUTE AND PRINT TABLE
210 FOR N=A TO B STEP H
220 LET Q=P*(1+R/100)%N
230 PRINT N.INT(O+.5)
240 NEXT N
999 END
```

RUN
INITIAL PQPULATIENTROS GKOWTH RATE?I
INITIAL VALUE OF NTO FINAL VALUE OF Niloo STEP S12ET1O

SUBSCRIPTED VARIABLES

Until now, we have used only simple BASIC variables. A simple variable consists of a letter (any letter A to Z) or a letter followed by a single digit (any digit 0 to 9).

For example, the following are simple variables:
$\begin{array}{lllll}P & R & K & P 1 & P 2\end{array}$

Now we want to introduce a new type of variable, called a

Subscripted variable

Subscripted variable:
Subscript:

Say it like this: "Psub 5"

A subscripted variable names a location inside the computer; you can think of it as a box, a place to store a number.
$\underset{\text { EIGHTSUBSCRIPTED VARIABLES }}{\text { E }}$

EIGHT MORE SUBSCRIPTED VARIABLES

KNOW THIS:

P, Pl and $\mathrm{P}(1)$ are three distinct variables. All three can appear in the same program. They may confuse you, but the computer will recognise them as three different variables.

Please re-read the last page before you read this one. Seriously, it will really help.

We can also use a variable as a subscript.

Subscripted variable:
Subscript:

Call it "Psub K"

Below is the 1970 population and growth table.

REGIONS	K	$\mathrm{P}(\mathrm{K})$ [in millions]	R(K) \%
AFRICA	1	344	2.6
ASIA	2	2056	2.3
N. AMERICA	3	228	1.1
L. AMERICA	4	283	2.9
EUROPE	5	462	0.8
U.S.S.R.	6	243	1.0
OCEANIA	7	19	2.0
WORLD	8	3635	2.0

$P(K)$ is the population in millions of people for region K.
$\mathbf{R}(\mathrm{K})$ is the rate of growth expressed as per cent for region K.

For example, North America is region 3.

$$
\begin{aligned}
& \mathbf{P}(3)=228 \text { million people } \\
& \mathbf{R}(3)=1.1 \%
\end{aligned}
$$

Your turn. Complete the following:

$$
\begin{array}{ll}
\mathbf{P}(\mathbf{2)}=\square & \text { million people } \\
\mathbf{R}(\mathbf{2})=\square & \% \\
\mathbf{P}(\mathbf{8})=\square & \text { million people } \\
\mathbf{R}(8)=\square & \%
\end{array}
$$

Since we are dealing with a new idea, we will apply it to an old problem. /The logic of that escapes me, hut it seems pedagogically sound. -Ed./

We write a program to read values of $\mathrm{P}(\mathrm{K})$ and $\mathrm{R}(\mathrm{K})$ and print the 1970 worlo POPULATION DATA TABLE.

```
100 REMARK*&#READ THE P(K)'S ANO R(K)'S
110 READ M
120 DIM P(M),R(M)
130 FER K=1 TO M
140 KEAD P(K),R(K)
ISO NEXT K
```



```
                                    IF YOU GET AN ERROR MESSAGE ABOUT
                                    LINE 120, DELETE LINE 120 AND TRY AGAIN.
                                    WE'LL EXPLAIN LATER.
```

200 REMARK**कPRINT THE HEADING
210 PRINT " 1970 WOKLD POPULATIEN DATA"
220 PRINT
230 PRINT "REGIEN NO.","POPULATION", "GKOWTH KATE"
240 PRINT
300 REMARK末**PKINT TME TABLE
310 FOK K=1 TE M
320 PRINT K,P(K),R(K)
330 NEXT K
900 REMARK***DATA BASE
905 DATA 8
910 DATA 344.2.6.2056.2.3
920 DATA 228.1.1.283.2.9
930 DATA $162 . .8 .243 .1$
940 DATA 19.2 .3635 .2
999 END
RUN
1970 WGRLD PEPULATIEN DATA
REGION NS. POPULATION GROWTH RATE

1	344	2.6
2	2056	2.3
3	288	1.1
4	283	2.9
5	462	.8
6	243	1
7	19	2
8	3635	2

READY.

To find out how the program works, turn the page.

How does the program work?

Line 110 reads the value of M. Now the computer knows how many values of $P(K)$ and $R(K)$ are involved. Line 120 is a DIMension statement which says "Reserve M places in the computer memory for $P(K)$'s and M places for $R(K)$'s."

Some BASIC systems do not permit a variable to appear in a DIM statement. If you have trouble, ask someone to explain how the DIM statement works on your computer or dig the information out of the reference manual for your system.

Lines 130 to 150 cause the computer to READ the values of $P(1), R(1), P(2)$. $R(2)$, etc., into the computer's memory, so that they end up being stored like this:

$P(1)$	344	$R(1)$
$P(2)$	2056	$R(2)$
$P(3)$	228	2.6
$P(4)$	283	$R(4)$
$P(5)$	$R(5)$	1.1
$P(6)$	243	$R(6)$
$P(7)$	$R(8)$	$R(8)$

Lines 210 to 240 direct the computer to print the heading.

4 Lines 310 to 330 tell the computer to print M rows of numbers:
the value of K
each row the value of $P(K)$
contains
and the value of $R(K)$.

BUILDING BLOCKS

Our programs are getting longer. Time to introduce another new idea . . .

Subroutines!

... featuring two new BASIC statements.

GOSUB \& RETURN

The following program has a MAIN PROGRAM, three SUBROUTINES, and a data base. The subroutines are called hy GOSUB statements in the main program. More about that later. Here is the program.

```
100 REMARK***MAIN PROGRAM
110 READ M
120 DIM P(M)OR(M)
130 GESUB 310
140 GOSUB 410
150 GESUB 510
160 STOP
```

300 REMARK***SUBROUTINE: READ P(K)'S AND R(K)'S
310 FGR K=1 T0 M
320 READ P(K),R(K)
330 NEXT K
340 RETURN

```
400 REMARK***SUBRDUTINE: PRINT HEADING
410 PRINT "1970 WORLD POPULATION DATA"
420 PRINT
430 PRINT "KEGION ND.","PQPULATION","GFOWTH RATE"
440 PRINT
450 RETURN
500 REMARK***SUBRØUTINE: PKINT THE TABLE
510 FOR K=i TO M
520 PRINT K,P(K),R(K)
530 NEXT K
540 RETURN
900 REMARK***DATA BASE
905 DATA 8
910 DATA \(344,2.6,2056,2.3,228,1,1,283,2.9\)
920 DATA \(462, .8,243,1,19,2,3635,2\)
999 END

The main program puts the building blocks together.


Try this ... replace the main program, as follows:
```

100 REMARK***MAIN PROGRAM
110 READ M
120 DIM P(M), R(M)
130 GOSUB 410 +.-...-...-.-.-.-.-. Print the heading first.

```




WE HOPE YOU WILL GET INTO THE HABIT OF WRITING ALL YOUR PROGRAMS AS A MAIN PROGRAM THAT CALLS SUBROUTINES AS THEY ARE NEEDED. FROM NOW ON, WE WILL.

\section*{INFORMATION RETRIEVAL}

Are the building blocks (subroutines, that is) and data base in the computer? If not, enter them (from paper tape, we hope). Then enter the following main program. It uses only one of the subroutines.
```

100 REMARK*中\&MAIN PROERAM
110 READ M
180 D\&N P(M)OR(M)
130 GesuB 310
INO PRINT *INFO FOR WHICN REGION*:
150 IMPUT K
1 6 0 ~ P R I N T ~
170 PRINT "POPULATION IS*IP(K)SNMILLION*
180 PRINT "ERENTH RATE IS*SRUKDSNZ"
190 PRINT
00 60 TO 140

```

RUN
INT FOR UHICN REGIONPI
 Get the info for Asia. POPULATION 18344 MILLIEN EROUTH RATE 158.6 \%

IMT TOR WHIGN REEICNPS

\section*{POPULATIEN IS 462 MILLIEN}

\section*{GROUTH RATE 18 -8 8}

INF FER UHICH REGINT (and so on...)

But wouldn't it be nice if we could do it like this:


Perhaps you can! Ask someone (or check the reference manual) about STRINGS and STRING VARIABLES and STRING FUNCTIONS.
 be able to do without them!!! They're addicting.

New main program (same old subroutines and data base).
```

100 REMARK**\#CEMPARE TWO REGIENS, MAIN PROGRAM
10S READ M
110 DIM P{M},R(M)
115 G0SUB 310
180 GESUB 410
125 GesuB 510
130 PRINT
135 PRINT "LET'S CBMPARE TME GKDWTH EF TWB REGIBNS. A AND B.*
IAO PRINT "WHEN I ASK. YOU ENTER THE REGIQN NUMBER FOF REGION A"
IAS PRINT "AND THE NUMBER FOR REGION B AND THE YEAR FOR WMICH"
ISO PRINT "YOU WANT A COMPARISON. I"LL DS TME REST."
15S PRINT
160 PRINT *REGIEN A**
165 INPUT A
170 PRINT "FEGIEN B"!
175 1NPUT B
IBO PRINT "YEAR";
185 INPUT Y
190 LET NEY-1970
195 LET 01 mp(A)* (1 +R(A)/100) ON
800 LET 02mP(8)* (1+R(B)/100) %N

```

```

210 PRINT "REGIEN'3B;";",INTCOR*-5);*MILLIEN*
215 G4 T0 155

```

Enter the above main program. Also enter the three subroutines and the data base. Then RUN the complete program. It should look like this:

1970 WERLD PEPULATIEN DATA
REGION NB. POPULATION GKEWTH RATE
\begin{tabular}{lll}
1 & 344 & 8.6 \\
8 & 2056 & 2.3 \\
3 & 288 & 1.1 \\
4 & 283 & 2.9 \\
5 & 462 & 18 \\
6 & 243 & 2 \\
7 & 3635 & 2
\end{tabular}

LET'S COMPARE THE GROWTH OF TWO REGIENS. A AND B.
MEN I ASK, YOU ENTER THE REGION MUMEER FOR FEGION A
HO THE WUMBEF FER REGIEN 8 ARD THE YEAR FOR WHICN
YOU WANT A CEMPAKISON. ILL DG THE REST.


\section*{Boubte subscenpfs}

Our table of population and growth rate for eight population regions is a set of demographic statistics. Here is another way to store it in the computer.
\(D\) is a table (matrix, array) of demographic data.
\(D\) is arranged in rows and columns, like this
\begin{tabular}{|c|c|c|c|c|}
\hline REGION & \multicolumn{2}{|l|}{POPULATION} & \multicolumn{2}{|l|}{GROWTH RATE} \\
\hline AFRICA & \(D(1,1)\) & 344 & \(D(1,2)\) & 2.6 \\
\hline AS IA & \(D(2,1)\) & 2056 & \(D(2,2)\) & 2.3 \\
\hline N. AMERICA & \(D(3,1)\) & 228 & \(D(3,2)\) & 1.1 \\
\hline L. AMERICA & \(D(4,1)\) & 283 & \(D(4,2)\) & 2.9 \\
\hline EUROPE & \(D(5,1)\) & 462 & \(D(5,2)\) & 0.8 \\
\hline U.S.S.R. & \(D(6,1)\) & 243 & \(D(6,2)\) & 1.0 \\
\hline OCEANIA & \(D(7,1)\) & 19 & \(D(7,2)\) & 2.0 \\
\hline WORLD & \(D(8,1)\) & 3635 & \(O(8,2)\) & 2.0 \\
\hline
\end{tabular}

That's right. \(\mathrm{D}(1,1)\) is a name of a box, location, place to store a number in the computer. So is \(D(1,2)\) and \(D(2,1)\) and \(D(5,2)\) and \(D(6,1)\) and \(D(7,2)\) and \(\ldots\). Complete the following.
- What number is in \(\mathrm{D}(4,1)\) ?
- What number is in \(\mathrm{D}(8,2)\) ? \(\qquad\)
- The population of N . America is in \(\mathrm{D}(\) , -
- The growth rate of U.S.S.R. is in \(\mathrm{D}(\) \(\qquad\) \(D\) has two subscripts: \(1(3,2)\)


In our example on the preceding page . . . the first subscript refers to the region.


It may be \(1,2,3,4,5,6,7,8\).


The second subscript refers to the kind of data, 1 for population and 2 for growth rate.

We can also use variable subscripts.


Our data base includes two kinds of data for 8 regions, (including the World total). We got our data from the 1970 WORLD POPULATION DATA SHEET. It lists data for 142 countries plus regional summaries. It also lists additional statistics for each country or region ... for example, birth rate, death rate, and so on.

```

Here we go again . . . 1970 WORLD POPULATION DATA. This program
is very similar to the program on Page 53. In fact, if you have that program
on paper tape, load it and then make the changes indicated by the arrows.
100 REMARK***MA3N PROGRAM
110 READ M

```

```

130 GESUB 310
140 GESUB 410
\$50 gesub 510
160 STEP
100 REMARK***SUBRQUTINE: READ DATA INTE D \&-.-And this.
310 FOR K=1 T0 M

```

```

330 NEXT K
340 RETURN
400 REMARK***SUBREUTINE: PKINT MEADING
410 PRINT *1970 WERLD PGPULATIGN DATA*
CO PRINT
400 PRENT "REGION NG.""*PQPULATION", "GEOWTH RATE"
4O PRINT
40 RETURN
500 REMARK***SUBROUT INE: PRINT TNE TABLE
510 FOR K=1 T0 M

```

```

530 NEXT K
SA0 RETURN
900 REMARK\#\#*DATA BASE
\$05 DATA 8
9 1 0 ~ D A T A ~ 3 4 4 . 2 . 6 . 2 0 5 6 . 2 . 3 . 2 8 8 . 1 . 1 . 2 8 3 . 2 . 9 ~
NO DATA 462..8.243,1,19.2,3635,2
2%S END
RMM
1970 WERLD POPULATIEN DATA
EEGIEN NB. POPULATION ERENTH RATE
!

```

```

2056	2.3
228	1.1
283	2.9
468	18
843	2
19	2

RITADY.

```


\section*{things to do}
\(\rightarrow\) Replace the data base used in the program on Page 59 with the data base on Page 45. Then RUN the program.
\(\rightarrow\) Rewrite the program on Page 56. Use the subscripted variable \(D\) instead of \(P\) and \(R\). If you have everything on paper tape, it's easy!

Here is a new data base.
\begin{tabular}{lrcccc} 
REGION & POPULATION & GROWTH RATE & BIRTH RATE \(t\) DEATH RATEt \\
\hline AFRICA & 344 & 2.6 & 47 & 20 \\
ASIA & 2056 & 2.3 & 38 & 15 \\
N. AMERICA & 228 & 1.1 & 18 & 9 \\
L. AMERICA & 283 & 2.9 & 38 & 9 \\
EUROPE & 462 & .8 & 18 & 10 \\
U.S.S.R. & 243 & 1.0 & 17.9 & 7.7 \\
OCEANIA & 19 & 2.0 & 25 & 10 \\
WORLD & 3635 & 2.0 & 34 & 14 \\
\hline
\end{tabular}

Rewrite the program on Page 59 to read the above data and print the table. Then think up ways to use the data and write programs to do so.


Write a program to do this.
I970 WOKLD PEPULAIION DATA
REGION NE. POPULATIEN GKOLTH RATE

1

\section*{§anus}

Janus is a god. He has two faces. He looks backwards ... forwards.
Let's look backward, took forward.
- Now you can speak a little BASIC.
- But you aren't yet fluent.
- We have introduced only a primitive form of BASIC: We did so because you may be using a computer that does not have the extended form of B. \(1 S / C\) that permits use of

STRING cariables and operations M. 1 T operations FILES
- We have applied the computer to only one area of application ... population growth and demographic data.

This is the end of the heginning. Look ahead ... and one more thing .

\section*{please rectele this book}

If you want to learn more about BASIC and you like math, try one of these:
* Basic BASIC by James S. Coan

From: Hayden Book Company, Inc. 116 West Fourteenth Street New York, NY 10011
* BASIC PROGRAMMING (Second Edition) by John G. Kemeny and Thomas E. Kurtz

From: John Wiley and Sons, Inc. 605 Third Avenue New York, NY 10016

If you want to learn more about BASIC and your math is a little wobbly (or non-existent!), try this one instead:
* BASIC by Robert L. Albrecht, LeRoy Finkel and Jerald R. Brown

From: John Wiley and Sons, Inc.
605 Third Avenue
New York, NY 10016
If you want to learn more about computers, what they are, what they do, etc., the best book is:
* Computers and Computation by Scientific American

From: \(\begin{array}{ll}\text { W.H. Freeman and Company } \\ & 660 \text { Market Street }\end{array}\) San Francisco, California 94104

If you are having trouble thinking up things to try on your computer, here is a beautiful book . . . a classic:
* Problems for Computer Solution by Fred Gruenberger and George Jaffray

From: John Wiley and Sons, Inc.
605 Third Avenue
New York, NY 10016

And maybe you would like to subscribe to PEOPLE'S COMPUTER COMPANY the newspaper about educational/recreational use of computers. See page 64 for details.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ST0t6 blusojure `xred oluaw} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OIE xog O'd
KNV dWO. צBL.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \(\mid \mathrm{VSo}\) &  \\
\hline  & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline ammu alı jo sjool & 45 \\
\hline msnu 'sulul 'syooq & \\
\hline s.aphduos-!t!til Ang of Moy & \\
\hline Smonduos asn of MOLf สutura & \\
\hline Stapdutos yitm ung Bu!ary & \\
\hline - pnoqr dadedsmaluest & \\
\hline
\end{tabular}

\section*{WHAT TO DO AFTER YOU HIT RETURN}
PCC's FIRST BOOK OR
This book is destined to become one of those books It is conspicuous, one of those books that is too big to fit on the shelf, so you find it lying about on a
table; it is eclectic -- one of those new, soft-cover, table; it is eclectic -- one of those new, soft-cover,
newsprint catalogs that is crammed to the margins with interesting tidbits and graphics: it is a curiosity one of those books you teel compelled to pick up, just to see what is inside: and most important, it is will help you find, obtain, or "get into" new materials for the enrichment of learning.
\(\$ 6.95\) plus \(\$ 0.50\) handling to -
PEOPLE'S COMPUTER COMPANY
Menlo Park. California 94025


\section*{GAMES, TRICKS AND PUZZLLES \\ Dymax, 1974. 100pp., paperback}

Do you own a hand calculator? You do? Good! This informative, entertaining, and very useful volume was

The author has covered many of your favorite mathematical games and recreations. He shows you how a calculator can be used to perform many of the more extract square roots and percents, how to get the power of a number, and even how to generate random numbers. You are also shown how to perform tricks unique to the calculator and its keyboard. In addition to all of this, a typical calculator's insides are exposed
to view and explained so that you can learn how it was to view and explained so that you can learn how it \(w\)
put together and how it functions, and thus more readily understnad the hints given by the author on how to detect and correct some of the more common malfunctions hand calculators are prone to. The asked in the text. of which there are many, and by giving the solutions to all of the problems and puzzles he posed to the reader.
\(\$ 2.95\) plus \(\$ 0.50\) handing to -
DYMAX
P. O. Box 310
Menlo Park, California 94025```


[^0]:    By the way, in examining the above results, we noticed an odd thing. The first seven population figures in the column headed POP. IN 2001 should add up to the eighth figure in the column (World population in 2001), but they don't. Why not?

